首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
细胞外基质在植物发育中的作用   总被引:6,自引:1,他引:5  
植物细胞壁是由纤维素和果胶交联的多糖和蛋白质构成的既彼此独立,又相互作用的三维动力学网络。和动物的细胞外基质一样,植物细胞壁中的许多成分积极地参与植物细胞发育过程的调节,它们以某种方式将信息传递给细胞,调节细胞的行为,以便对各种外界环境作出相应的反应。因此细胞壁不再是一种环绕植物细胞的惰性结构,比起细胞壁,植物细胞外基质这一名词更能反映出这一动力学的特性。  相似文献   

2.
绝大多数植物细胞的质膜外都有细胞壁,这是区别予动物细胞的显著特征之一。由于细胞壁的存在,使原生质体的膨胀受到限制,细胞成熟后,使其形态和大小变为固定。细胞壁有保护作用,厚而硬的细胞壁还有支持植物器官的机械作用,同时,细胞壁能影响植物组织的吸收、蒸腾、运输和分泌等功能。  相似文献   

3.
细胞壁与细胞的发育   总被引:1,自引:0,他引:1  
细胞壁除了起着机械支持、参与物质运输和防御反应等功能外,与细胞的发育密切相关。它们可作为信号分子,促进植物细胞的分裂增殖,决定细胞的分化方向,参与细胞识别过程等。概述了近年来细胞壁调节细胞发育的新进展。  相似文献   

4.
水分亏缺下细胞延伸生长与细胞膨压和细胞壁特性的关系   总被引:17,自引:1,他引:16  
在简要介绍植物细胞延伸生长的生物物理模型的基础上,综述了水分亏缺下植物细胞延伸生长与细胞膨压、细胞壁伸展性和细胞壁塑变阈值的关系,阐述了植物细胞壁调节在作物抗旱性中的作用。  相似文献   

5.
植物细胞壁作为细胞外复杂交联网络,为植物细胞生长、发育以及适应环境变化提供机械支撑,具有调节植物形态、抵抗胁迫、运输水分等功能。除此之外,植物光合作用积累的生物质大部分贮藏在细胞壁中,因此,研究细胞壁的成分和纳微结构对更好的利用植物能源具有重要意义。植物细胞壁的结构研究是当今植物界研究的前沿热点之一。随着新型成像技术的发展,近年来关于细胞壁成分和纳微结构的研究取得了阶段性的进展。本文就植物细胞壁的成分、结构、成像技术和力学性质进行了总结与展望,以期为植物细胞壁的相关研究提供新思路。  相似文献   

6.
基质金属蛋白酶与心肌重塑   总被引:1,自引:0,他引:1  
细胞外基质参与和促进了心肌重塑的过程,基质金属蛋白酶是调节细胞外基质重要的酶,基质金属蛋白酶在心肌重塑过程表达变化可分为三个时相,其活性受到信号传导途径、炎症因子和活性氧/活性氮的调节,基质金属蛋白酶可能作为心肌梗塞等疾病治疗的靶标  相似文献   

7.
气孔运动调节植物的光合作用和蒸腾作用,对植物的生长发育和干旱等非生物胁迫的响应都起到重要的作用。保卫细胞能够通过感知胞内和胞外多种信号调节气孔开度,因此,保卫细胞已经成为植物细胞信号转导研究中广泛应用的细胞模型。该文对保卫细胞中微丝骨架和活性氧对气孔运动的调节作用、微丝骨架在调节细胞壁与质膜间联系中的作用进行了综述,最后分析了微丝骨架通过ROS(reactive oxygen species)调节保卫细胞壁–质膜联系参与气孔运动调控的可能机制。  相似文献   

8.
细胞与细胞外基质的相互作用以及细胞外基质的重构在脂肪组织的形成过程中发挥了重要作用。细胞外基质的这一系列变化是由细胞分泌的蛋白酶及其抑制物调控的,其中基质金属蛋白酶(MMPs)是一类调控细胞外基质分解的蛋白酶家族。MMPs的活性受其四种组织抑制物调节,即TIMP1-4。以前对TIMP在脂  相似文献   

9.
近年来的研究表明,Ca2+在植物细胞的信号转导过程中一直起着非常重要的作用。通常,生活细胞内游离钙的浓度保持在30—200nmol/L的范围内, 但来自细胞外或细胞内的各种刺激,则可引起细胞内游离钙浓度的瞬时变化,从而使Ca2+通过不同的信号转导途径,直接或间接地调节细胞生理和生化过程。在植物细胞的生命活动过程中,Ca2+的调节功能表现为多种多样,其中包括离子运输、细胞运动、糖类代谢、细胞分裂、细胞分泌以及基因表达等等。有人研究发现,在植物细胞间隙、细胞壁以及液泡中Ca2+的浓度远高于细胞内游离钙浓度,它们是细胞质…  相似文献   

10.
ECBP21是我们从白芷悬浮培养细胞外纯化及cDNA克隆的一种钙调素结合蛋白(CaMBP),亦是植物中首次报道的细胞外CaMBP。本实验以大肠杆菌表达的重组ECBP21蛋白为抗原,制备了高效价特异性抗体;随后,利用免疫组化及金标定位技术,研究了ECBP21蛋白组织特异性分布及亚细胞定位。免疫组化结果表明:ECBP21在白芷各组织中均有分布,但在叶、花、花序轴中较多,而在根中较少,并且ECBP21在细胞中多分布于细胞壁区域;免疫胶体金电镜定位结果显示:在白芷花序轴细胞中金颗粒主要分布在细胞壁,表明ECBP21蛋白主要定位于细胞壁区域,从而首次为细胞外CaMBP(ECBP21)的胞外存在提供了直观证据,并为进一步研究其在植物生长发育中的功能提供了初步信息。  相似文献   

11.

Background

Neural stem/progenitor cells (NSPCs) reside within a complex and dynamic extracellular microenvironment, or niche. This niche regulates fundamental aspects of their behavior during normal neural development and repair. Precise yet dynamic regulation of NSPC self-renewal, migration, and differentiation is critical and must persist over the life of an organism.

Scope of review

In this review, we summarize some of the major components of the NSPC niche and provide examples of how cues from the extracellular matrix regulate NSPC behaviors. We use proteoglycans to illustrate the many diverse roles of the niche in providing temporal and spatial regulation of cellular behavior.

Major conclusions

The NSPC niche is comprised of multiple components that include; soluble ligands, such as growth factors, morphogens, chemokines, and neurotransmitters, the extracellular matrix, and cellular components. As illustrated by proteoglycans, a major component of the extracellular matrix, the NSPC, niche provides temporal and spatial regulation of NSPC behaviors.

General significance

The factors that control NSPC behavior are vital to understand as we attempt to modulate normal neural development and repair. Furthermore, an improved understanding of how these factors regulate cell proliferation, migration, and differentiation, crucial for malignancy, may reveal novel anti-tumor strategies. This article is part of a Special Issue entitled Matrix-mediated cell behaviour and properties.  相似文献   

12.
Rapid cellular responses to auxin and the regulation of growth   总被引:4,自引:4,他引:0  
Abstract The cellular responses rapidly evoked by auxin are reviewed, and related to a consideration of how growth rate is regulated in excised segments and in whole dicotyledonous plants. Two processes, synthesis of proteins and of cell wall components, are both promoted by auxin and essential for auxin-stimulated growth, whereas other processes show little promotion by auxin or do not appear essential for growth. Current models for the cellular regulation of growth by auxin are briefly discussed, and a new model presented. Auxin is suggested to act by bringing about a transient increase in cytosolic Ca2+ levels, which through the stimulation of protein kinases converts a cytoplasmic protein factor to an active state capable of binding auxin. The protein-auxin complex induces mRNA synthesis, which effects the increased synthesis of cell wall components and their incorporation into the wall, resulting in wall loosening and growth. It is proposed that the factor limiting growth in floating excised segments may initially be cell wall pH, but that this is not the case in whole plants and growth is instead mediated by increased protein and matrix cell wall synthesis. Differences are noted between monocotyledonous coleoptiles and dicotyledonous stems in some metabolic processes possibly involved in auxin growth responses, and it is cautioned that observations made on one tissue may not necessarily be applicable to the other. Care should also be taken in applying conclusions drawn from studies on excised tissue to the interpretation of growth regulation in the whole plant.  相似文献   

13.
Plant cells are surrounded by a dynamic cell wall that performs many essential biological roles, including regulation of cell expansion, the control of tissue cohesion, ion-exchange and defence against microbes. Recent evidence shows that the suite of polysaccharides and wall proteins from which the plant cell wall is composed shows variation between monophyletic plant taxa. This is likely to have been generated during the evolution of plant groups in response to environmental stress. Understanding the natural variation and diversity that exists between cell walls from different taxa is key to facilitating their future exploitation and manipulation, for example by increasing lignocellulosic content or reducing its recalcitrance for use in biofuel generation.  相似文献   

14.
Students of metazoan biology have traditionally viewed the extracellular matrix (ECM) as a substrate with which cells interact to participate in developmental pattern formation and define a specific location. In contrast, the plant cell wall has been viewed as a cage that limits and thus directs plant cell morphology, and perhaps for this reason many have shied away from calling the plant cell wall the ECM. The recent discovery of a variety of receptor molecules and their ligands on the surface of plant cells and the intimate role cell walls play in development should direct our thinking toward a more dynamic view of the plant cell wall. A recent example, is the discovery of wall associated kinases (WAKs), which may well signal between the ECM and the cell and are required for cell expansion.  相似文献   

15.
Capsella embryogenesis: The suspensor and the basal cell   总被引:1,自引:1,他引:0  
Summary The suspensor and basal cell ofCapsella were examined with the electron microscope and analyzed by histochemical procedures. The suspensor cells are more vacuolate and contain more ER and dictyosomes, but fewer ribosomes and stain less intensely for protein and nucleic acids than the cells of the embryo. The end walls of the suspensor cells contain numerous plasmodesmata but there are no plasmodesmata in the walls separating the suspensor from the embryo sac. The lower suspensor cells fuse with the embryo sac wall and the lateral walls of the lower and middle suspensor cells produce finger-like projections into the endosperm. At the heart stage the suspensor cells begin to degenerate and gradually lose their ability to stain for protein and nucleic acids.The basal cell is highly vacuolate and enlarges to a size of 150 X 70. An extensive network of wall projections develops on the micropylar end wall and adjacent lateral wall. The nucleus becomes deeply lobed and suspended in a strand of cytoplasm traversing the large vacuole. The cytoplasmic matrix darkens at the late globular stage and histochemical staining for protein becomes very intense. The basal cell remains active after the suspensor cytoplasm has degenerated. It is proposed that the suspensor and basal cell function as an embryonic root in the absorption and translocation of nutriments from the integuments to the developing embryo.Research supported by NSF grant GB 3460 and NIH grant 5-RO 1-CA-03656-09.  相似文献   

16.
In all eukaryotic organisms, a wide range of morphologies are responsible for critical cellular function and development. In particular, the Rho GTPases, which are highly conserved from yeast to mammals, are key molecules in signaling pathways that control cell polarity processes and cell wall biosynthesis, which are fundamental aspects of morphogenesis. Therefore, using haploinsufficiency deletion mutants of the fission yeast Schizosaccharomyces pombe, we screened the slow-growing mutants and their morphogenesis, specifically focusing on regulation of their Rho GTPases. Based on this screening, we found that the cwf14 mutant of S. pombe exhibited the slow growth and abnormal phenotypes with an elongated cell shape and thicker cell wall when compared with wild-type cells. In particular, cells with the cwf14 deletion showed excessive Rho1 expression. However, the wildtype strain with ectopically expressed Rho1 did not exhibited any significant change in the level of cwf14, suggesting that cwf14 may act on the upstream of Rho1. Furthermore, the cells with a cwf14 deletion also have increased sensitivity to β-glucanase, a cell wall-digesting enzyme, which is also seen in Rho1-overexpressing cells. Overall, our results suggest that the cwf14 plays a key role in fission yeast morphogenesis and cell wall biosynthesis and/or degradation possibly via the regulation of Rho1 expression.  相似文献   

17.
Glycosaminoglycans are integral part of the dynamic extracellular matrix (ECM) network that control crucial biochemical and biomechanical signals required for tissue morphogenesis, differentiation, homeostasis and cancer development. Breast cancer cells communicate with stromal ones to modulate ECM mainly through release of soluble effectors during cancer progression. The intracellular cross-talk between cell surface receptors and estrogen receptors is important for the regulation of breast cancer cell properties and production of ECM molecules. In turn, reorganized ECM-cell surface interface modulates signaling cascades, which regulate almost all aspects of breast cell behavior. Heparan sulfate chains present on cell surface and matrix proteoglycans are involved in regulation of breast cancer functions since they are capable of binding numerous matrix molecules, growth factors and inflammatory mediators thus modulating their signaling. In addition to its anticoagulant activity, there is accumulating evidence highlighting various anticancer activities of heparin and nano-heparin derivatives in numerous types of cancer. Importantly, heparin derivatives significantly reduce breast cancer cell proliferation and metastasis in vitro and in vivo models as well as regulates the expression profile of major ECM macromolecules, providing strong evidence for therapeutic targeting. Nano-formulations of the glycosaminoglycan heparin are possibly novel tools for targeting tumor microenvironment. In this review, the role of heparan sulfate/heparin and its nano-formulations in breast cancer biology are presented and discussed in terms of future pharmacological targeting.  相似文献   

18.
19.
Summary Secretory vesicles involved in cell wall synthesis (wall vesicles) and the Golgi apparatus have been compared in conventionally fixed and freeze substituted hyphae of the oomycete fungusSaprolegnia ferax. Wall vesicles freeze substituted in various fluids range from spherical to tubular and contain an intensely staining, phosphorous rich matrix. In contrast diverse conventional fixations cause artefactual constrictions in most tubular vesicles and loss of their intensely staining contents. These data are interpreted to show the existence of an intravesicular skeletal system, with cellular regulation, to determine vesicle morphology and intravesicular synthesis of a hypothetical phosphorylated glycolipid cell wall precursor. Whilst freeze substitution gives superior preservation of wall vesicle morphology, it does not demonstrate any preferential association between wall vesicles and microtubules thus suggesting that microtubules are only indirectly involved in wall vesicle transport. Freeze substitution is superior to conventional fixation for analysis of the Golgi apparatus because it uniquely reveals both differentiation of a specific single cisterna in each Golgi body and greater differences in membrane thicknesses throughout the endomembrane system.  相似文献   

20.
Stipe elongation growth is one of the remarkable characteristics of the growth and development of basidiomycete fruiting bodies. Stipe elongation is resulting from the lateral extension of stipe cells. The stipe cell is enclosed within a thin cell wall which must be loosened to expand the wall surface area for accommodation of the enlarged protoplast as the stipe cell elongates. In fungal cell walls, chitin molecules associate with each other by interchain hydrogen bonds to form chitin microfibrils which are cross-linked covalently to matrix polysaccharides. Early, some scientists proposed that stipe elongation was the result of enzymatic degradation of wall polysaccharides, whereas other researchers suggested that stipe elongation resulted from nonhydrolytic disruption of the hydrogen bonds by turgor pressure between wall polysaccharides. Recently, an extensometer was used to determine stipe wall extension for elucidation of the molecular mechanism of stipe elongation. In Coprinopsis cinerea, the native stipe cell wall is induced to extend by acidic buffers and the acid-induced native wall extension activity is located in the growing apical stipe region. A series of current experiments indicate that chitinases play a key role in the stipe wall extension, and β-glucanases mainly function in the wall remodeling for regulation of stipe wall expansibility to cooperate with chitinase to induce stipe wall extension. In addition, fungal expansin-like proteins can bind to chitin to enhance chitin hydrolysis, and their expression pattern is consistent with the stipe elongation growth, which is suggested to play an auxiliary role in the stipe wall extension.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号