首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 125 毫秒
1.
昆虫抗冻蛋白的研究   总被引:5,自引:0,他引:5  
抗冻蛋白是具有热滞活性,能结合并抑制冰晶生长和抑制冰的重结晶的一类蛋白质。近几年来,昆虫抗冻蛋白的研究取得了较快的发展,本文通过分析昆虫抗冻蛋白的结构特点、抗冻活性、作用机制,并讨论了抗冻蛋白在食品工业、医学、基因工程方面的应用。结果表明,昆虫抗冻蛋白虽然结构呈多样性,但有很多关键的残基具有保守性,对维持抗冻蛋白结构和功能的完整性发挥着重要的作用;抗冻蛋白是由多基因家簇编码的。其作用机制主要是吸附一抑制机制,抗冻蛋白依靠氢键吸附到冰晶格,抑制冰晶生长;昆虫抗冻蛋白的应用具有很广阔的前景。  相似文献   

2.
昆虫抗冻蛋白: 规则结构适应功能   总被引:5,自引:0,他引:5  
邵强  李海峰  徐存拴 《昆虫学报》2006,49(3):491-496
抗冻蛋白在环境温度低于体液熔点时能够结合到生物体内的冰核表面,通过限制冰核生长和抑制冰晶重结晶而保护有机体免受结冰引起的伤害。与其他生物抗冻蛋白比较,昆虫抗冻蛋白有很强的活性,结构上具有显著特征,如一级结构规律重复,超二级结构为β-螺旋,可与冰晶发生相互作用,具有TXT基序等。该文综述了近年来关于昆虫抗冻蛋白的结构以及分子生物学等方面研究的新进展,讨论了其结构与功能的关系。  相似文献   

3.
新疆沙冬青抗冻蛋白的提取分离及其热滞活性测定   总被引:3,自引:0,他引:3  
抗冻蛋白被发现于低温环境下生存的生物体中,它能够吸附在冰晶表面并改变冰晶的生长形态,对于增加植物的抗低温胁迫能力有重要作用。用纤维素DE-52离子柱层析提取分离出了冬季新疆沙冬青(Ammopiptanthus nanus)叶片中的抗冻蛋白(AFPs)。差示扫描量热法(DSC)测定结果表明,当蛋白浓度为20mg/ml时,抗冻蛋白的热滞活性(THA)为0·46℃。经SDS-PAGE电泳分析,此抗冻蛋白的分子量为119·24kDa。  相似文献   

4.
昆虫抗冻蛋白的分离纯化及特性分析   总被引:1,自引:0,他引:1  
昆虫抗冻蛋白具有很高的热滞活性,可保护机体免受结冰引起的伤害。昆虫抗冻蛋白的分离纯化多采用凝胶过滤层析、离子交换层析及HPLC等技术,已用于鱼类抗冻蛋白纯化的冰亲和纯化(IAP)技术也可考虑应用于昆虫抗冻蛋白的分离提纯。昆虫抗冻蛋白具有高活性,规则的一级结构及类似的冰晶结合表面等特性。  相似文献   

5.
昆虫抗冻蛋白的研究进展   总被引:2,自引:0,他引:2  
肖业臣  曹阳 《生命的化学》2002,22(5):413-415
抗冻蛋白是具有热滞效应,能结合并抑制新的冰晶生长,能抑制冰的重结晶的一类蛋白质。近几年来,昆虫抗冻蛋白的研究取得了较快的发展,本文就昆虫抗冻蛋白的结构,活性的调控,功能与应用做一综述。  相似文献   

6.
差示扫描量热法直接测定抗冻蛋白质溶液的热滞效应   总被引:7,自引:1,他引:6  
文献上一直用显微镜观察法等测定抗冻蛋白的热滞效应,其冰晶量是靠观察晶核体积估算得得的,人为性很大,用并示扫描量热法直接测定沙冬青抗冻蛋白质溶液的热滞效应,通过熔融焓和冻结焓值准确地测定了冰晶含有量和热滞温度。同文献比较,沙冬青AFP具有极高的抗冻活性,而且开创了一个新的有效的测量抗冻蛋白抗冻活性的途径。  相似文献   

7.
抗冻蛋白活性的差示扫描量热测定及其吸附-抑制机制   总被引:1,自引:0,他引:1  
用差示扫描量热技术(DSC)测定了从黄粉虫(Tenebrio molitor)幼虫体内提取的抗冻蛋白(AFP)的活性,结果表明AFP活性随其浓度的增加及初始冰晶量的减少而增大,这与AFP对冰晶的吸附-抑制机制相一致。  相似文献   

8.
抗冻蛋白及其在食品中应用的研究进展   总被引:2,自引:0,他引:2  
抗冻蛋白(AFPs)是具有热滞活性、且能抑制冰晶重结晶的一类蛋白质。由于其特殊的结构和功能,可作为有效的抗冻添加剂应用于冷冻冷藏食品的加工、运输及贮藏过程,以提高食品的质量。本文对近年来有关抗冻蛋白的来源、作用机制以及在食品工业中的应用等方面的研究进展进行了综述。  相似文献   

9.
很多越冬的生物会产生抗冻蛋白,这些抗冻蛋白能够吸附到冰晶的表面改变冰晶形态并抑制冰晶的生长.抗冻蛋白在很多生物体内都被发现,不同的抗冻蛋白结构差异非常大.目前的一些研究揭示了几种抗冻蛋白的结构,并提出了抗冻蛋白与冰晶的结合模型,但是还没有一种机制能解释所有抗冻蛋白的作用机理.抗冻蛋白能被广泛的应用到农业、水产业和低温储藏器官、组织和细胞,利用转基因技术提高植物的抗冻性具有重要应用价值.而抗冻蛋白基因的表达调控则有待进一步阐明.  相似文献   

10.
根据抗冻蛋白与冰结合的特性, 利用碎冰从女贞(Ligustrum lucidum)叶提取液中分离出抗冻蛋白。结果表明, 通过碎冰吸附、凝胶过滤和离子交换层析可以获得4个组分的蛋白质, 其中的1个经鉴定具有热滞活性。在蛋白质浓度为5 mg. mL-1时, 它的热滞活性(thermal hysteresis activity, THA)值为0.678°C, 对其进行全波长扫描(200-1 000 nm)发现在975nm处有吸收峰; 该蛋白亲水性氨基酸含量较高。  相似文献   

11.
The mechanism by which fish antifreeze proteins cause thermal hysteresis   总被引:6,自引:0,他引:6  
Antifreeze proteins are characterised by their ability to prevent ice from growing upon cooling below the bulk melting point. This displacement of the freezing temperature of ice is limited and at a sufficiently low temperature a rapid ice growth takes place. The separation of the melting and freezing temperature is usually referred to as thermal hysteresis, and the temperature of ice growth is referred to as the hysteresis freezing point. The hysteresis is supposed to be the result of an adsorption of antifreeze proteins to the crystal surface. This causes the ice to grow as convex surface regions between adjacent adsorbed antifreeze proteins, thus lowering the temperature at which the crystal can visibly expand. The model requires that the antifreeze proteins are irreversibly adsorbed onto the ice surface within the hysteresis gap. This presupposition is apparently in conflict with several characteristic features of the phenomenon; the absence of superheating of ice in the presence of antifreeze proteins, the dependence of the hysteresis activity on the concentration of antifreeze proteins and the different capacities of different types of antifreeze proteins to cause thermal hysteresis at equimolar concentrations. In addition, there are structural obstacles that apparently would preclude irreversible adsorption of the antifreeze proteins to the ice surface; the bond strength necessary for irreversible adsorption and the absence of a clearly defined surface to which the antifreeze proteins may adsorb. This article deals with these apparent conflicts between the prevailing theory and the empirical observations. We first review the mechanism of thermal hysteresis with some modifications: we explain the hysteresis as a result of vapour pressure equilibrium between the ice surface and the ambient fluid fraction within the hysteresis gap due to a pressure build-up within the convex growth zones, and the ice growth as the result of an ice surface nucleation event at the hysteresis freezing point. We then go on to summarise the empirical data to show that the dependence of the hysteresis on the concentration of antifreeze proteins arises from an equilibrium exchange of antifreeze proteins between ice and solution at the melting point. This reversible association between antifreeze proteins and the ice is followed by an irreversible adsorption of the antifreeze proteins onto a newly formed crystal plane when the temperature is lowered below the melting point. The formation of the crystal plane is due to a solidification of the interfacial region, and the necessary bond strength is provided by the protein "freezing" to the surface. In essence: the antifreeze proteins are "melted off" the ice at the bulk melting point and "freeze" to the ice as the temperature is reduced to subfreezing temperatures. We explain the different hysteresis activities caused by different types of antifreeze proteins at equimolar concentrations as a consequence of their solubility features during the phase of reversible association between the proteins and the ice, i.e., at the melting point; a low water solubility results in a large fraction of the proteins being associated with the ice at the melting point. This leads to a greater density of irreversibly adsorbed antifreeze proteins at the ice surface when the temperature drops, and thus to a greater hysteresis activity. Reference is also made to observations on insect antifreeze proteins to emphasise the general validity of this approach.  相似文献   

12.
《Cryobiology》2006,52(3):262-280
Antifreeze proteins are characterised by their ability to prevent ice from growing upon cooling below the bulk melting point. This displacement of the freezing temperature of ice is limited and at a sufficiently low temperature a rapid ice growth takes place. The separation of the melting and freezing temperature is usually referred to as thermal hysteresis, and the temperature of ice growth is referred to as the hysteresis freezing point. The hysteresis is supposed to be the result of an adsorption of antifreeze proteins to the crystal surface. This causes the ice to grow as convex surface regions between adjacent adsorbed antifreeze proteins, thus lowering the temperature at which the crystal can visibly expand. The model requires that the antifreeze proteins are irreversibly adsorbed onto the ice surface within the hysteresis gap. This presupposition is apparently in conflict with several characteristic features of the phenomenon; the absence of superheating of ice in the presence of antifreeze proteins, the dependence of the hysteresis activity on the concentration of antifreeze proteins and the different capacities of different types of antifreeze proteins to cause thermal hysteresis at equimolar concentrations. In addition, there are structural obstacles that apparently would preclude irreversible adsorption of the antifreeze proteins to the ice surface; the bond strength necessary for irreversible adsorption and the absence of a clearly defined surface to which the antifreeze proteins may adsorb. This article deals with these apparent conflicts between the prevailing theory and the empirical observations. We first review the mechanism of thermal hysteresis with some modifications: we explain the hysteresis as a result of vapour pressure equilibrium between the ice surface and the ambient fluid fraction within the hysteresis gap due to a pressure build-up within the convex growth zones, and the ice growth as the result of an ice surface nucleation event at the hysteresis freezing point. We then go on to summarise the empirical data to show that the dependence of the hysteresis on the concentration of antifreeze proteins arises from an equilibrium exchange of antifreeze proteins between ice and solution at the melting point. This reversible association between antifreeze proteins and the ice is followed by an irreversible adsorption of the antifreeze proteins onto a newly formed crystal plane when the temperature is lowered below the melting point. The formation of the crystal plane is due to a solidification of the interfacial region, and the necessary bond strength is provided by the protein “freezing” to the surface. In essence: the antifreeze proteins are “melted off” the ice at the bulk melting point and “freeze” to the ice as the temperature is reduced to subfreezing temperatures. We explain the different hysteresis activities caused by different types of antifreeze proteins at equimolar concentrations as a consequence of their solubility features during the phase of reversible association between the proteins and the ice, i.e., at the melting point; a low water solubility results in a large fraction of the proteins being associated with the ice at the melting point. This leads to a greater density of irreversibly adsorbed antifreeze proteins at the ice surface when the temperature drops, and thus to a greater hysteresis activity. Reference is also made to observations on insect antifreeze proteins to emphasise the general validity of this approach.  相似文献   

13.
Polycarboxylates enhance beetle antifreeze protein activity   总被引:1,自引:0,他引:1  
Antifreeze proteins (AFPs) lower the noncolligative freezing point of water in the presence of ice below the ice melting point. The temperature difference between the melting point and the noncolligative freezing point is termed thermal hysteresis (TH). The magnitude of the TH depends on the specific activity and the concentration of AFP, and the concentration of enhancers in the solution. Known enhancers are certain low molecular mass molecules and proteins. Here, we investigated a series of polycarboxylates that enhance the TH activity of an AFP from the beetle Dendroides canadensis (DAFP) using differential scanning calorimetry (DSC). Triethylenetetramine-N,N,N',N',N',N'-hexaacetate, the most efficient enhancer identified in this work, can increase the TH of DAFP by nearly 1.5 fold over than that of the published best enhancer, citrate. The Zn(2+) coordinated carboxylate results in loss of the enhancement ability of the carboxylate on antifreeze activity. There is not an additional increase in TH when a weaker enhancer is added to a stronger enhancer solution. These observations suggest that the more carboxylate groups per enhancer molecule the better the efficiency of the enhancer and that the freedom of motion of these molecules is necessary for them to serve as enhancers for AFP. The hydroxyl groups in the enhancer molecules can also positively affect their TH enhancement efficiency, though not as strongly as carboxylate groups. Mechanisms are discussed.  相似文献   

14.
The Antarctic sea ice diatom Navicular glaciei produced ice-binding protein (NagIBP) that is similar to the antifreeze protein (TisAFP) from snow mold Typhula ishikariensis. In the thermal hysteresis range of NagIBP, ice growth was completely inhibited. At the freezing point, the ice grew in a burst to 6 direction perdicular to the c-axis of ice crystal. This burst pattern is similar to TisAFP and other hyperactive AFPs. The thermal hysteresis of NagIBP and TisAFP could be increased by decreasing a cooling rate to allow more time for the proteins to bind ice. This suggests the possible second binding of proteins occurs on the ice surface, which might increase the hysteresises to a sufficient level to prevent freezing of the brine pockets which habitat of N. glaciei. The secondary ice binding was described as that after AFP molecules bind onto the flat ice plane irreversibly, which was based on adsorption–inhibition mechanism model at the ice–water interface, convex ice front was formed and overgrew during normal TH measurement (no annealing) until uncontrolled growth at the nonequilibrium freezing point. The results suggested that NagIBP is a hyperactive AFP that is expressed for freezing avoidance.  相似文献   

15.
Antifreeze proteins (AFPs) are ice binding proteins found in some plants, insects, and Antarctic fish allowing them to survive at subzero temperatures by inhibiting ice crystal growth. The interaction of AFPs with ice crystals results in a difference between the freezing and melting temperatures, termed thermal hysteresis, which is the most common measure of AFP activity. Creating antifreeze protein constructs that reduce the concentration of protein needed to observe thermal hysteresis activities would be beneficial for diverse applications including cold storage of cells or tissues, ice slurries used in refrigeration systems, and food storage. We demonstrate that conjugating multiple type I AFPs to a polyallylamine chain increases thermal hysteresis activity compared to the original protein. The reaction product is approximately twice as active when compared to the same concentration of free proteins, yielding 0.5 °C thermal hysteresis activity at 0.3 mM protein concentration. More impressively, the amount of protein required to achieve a thermal hysteresis of 0.3 °C is about 100 times lower when conjugated to the polymer (3 μM) compared to free protein (300 μM). Ice crystal morphologies observed in the presence of the reaction product are comparable to those of the protein used in the conjugation reaction.  相似文献   

16.
Wang L  Duman JG 《Biochemistry》2005,44(30):10305-10312
Larvae of the beetle Dendroides canadensis produce a family of 13 antifreeze proteins (DAFPs), four of which are in the hemolymph. Antifreeze proteins lower the noncolligative freezing point of water (in the presence of ice) below the melting point, producing a difference between the freezing and melting points termed thermal hysteresis. This activity (THA) is dependent upon DAFP specific activity, concentration, and the presence of enhancers. Enhancers may be low molecular mass enhancers, such as glycerol, or other proteins. The protein enhancers complex with the DAFPs, thereby blocking a larger surface area of the potential seed ice crystal and consequently lowering the freezing point. A yeast two-hybrid screen was performed using certain hemolymph DAFPs as "bait" in an effort to identify endogenous protein enhancers. Among the positive proteins identified as interacting with the bait DAFPs, and confirmed by co-immunoprecipitation, were other DAFPs. When pure DAFPs were added to one another, those identified by the yeast two-hybrid screen as interacting with one another exhibited a synergistic enhancement of thermal hysteresis activity. In contrast, those DAFPs which the screen indicated did not interact failed to enhance one anothers' activities. DAFPs-1 and -2 interact and enhance one another. Point mutations of one of the interacting DAFPs (DAFP-2) indicated that both of the two amino acid residues that differ between DAFPs-1 and -2 were required for interaction. Glycerol enhanced the THA of the DAFPs only when DAFPs known to interact were present in the test solution. Addition of glycerol to a test solution containing only one DAFP did not produce enhancement. Therefore, glycerol enhances activity by stimulating interactions between DAFPs.  相似文献   

17.
Antifreeze proteins (AFPs) found in many organisms can noncolligatively lower the freezing point of water without altering the melting point. The difference between the depressed freezing point and the melting point, termed thermal hysteresis (TH), is usually a measure of the antifreeze activity of AFPs. Certain low molecular mass molecules and proteins can further enhance the antifreeze activity of AFPs. Interaction between an enhancer and arginine is known to play an important role in enhancing the antifreeze activity of an AFP from the beetle Dendroides canadensis (DAFP-1). Here, we examined the enhancement effects of several prevalent phosphate-containing coenzymes on the antifreeze activity of DAFP-1. β-Nicotinamide adenine dinucleotide (reduced) (NADH) is identified as the most efficient enhancer of DAFP-1, which increases the antifreeze activity of DAFP-1 by around 10 times. Examination of the enhancement abilities of a series of NADH analogs and various molecular fragments of NADH reveals that the modifications of nicotinamide generate a series of highly efficient enhancers, though none as effective as NADH itself, and the whole molecular structure of NADH is necessary for its highly efficient enhancement effect. We also demonstrated a 1:1 binding between DAFP-1 and NADH. The binding was characterized by high-performance liquid chromatography (HPLC) using the gel filtration method of Hummel and Dreyer. The data analysis suggests binding between DAFP-1 and NADH with a dissociation constant in the micromolar range. Interactions between DAFP-1 and NADH are discussed along with molecular mechanisms of enhancer action.  相似文献   

18.
Antifreeze proteins depress the freezing point of water while not affecting the melting point, producing a characteristic difference in freezing and melting points termed thermal hysteresis. Larvae of the beetle Dendroides canadensis accumulate potent antifreeze proteins (DAFPs) in their hemolymph and gut, but to achieve high levels of thermal hysteresis requires enhancers, such as glycerol. DAFPs have previously been shown to inhibit the activity of bacterial and hemolymph protein ice nucleators, however, the effect was not large and therefore the effectiveness of the DAFPs in promoting supercooling of the larvae in winter was doubtful. However, this study demonstrates that DAFPs, in combination with the thermal hysteresis enhancers glycerol (1 M) or citrate (0.5 M), eliminated the activity of hemolymph protein ice nucleators and Pseudomonas syringae ice-nucleating active bacteria, and lowered the supercooling points (nucleation temperatures) of aqueous solutions containing these ice nucleators to those of water or buffer alone. This shows that the DAFPs, along with glycerol, play a critical role in promoting hemolymph supercooling in overwintering D. canadensis. Also, DAFPs in combination with enhancers may be useful in applications which require inhibition of ice nucleators.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号