首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 203 毫秒
1.
大豆异黄酮代谢途径在大肠杆菌中的构建及表达   总被引:1,自引:0,他引:1       下载免费PDF全文
自然界异黄酮合成途径主要存在于豆科植物中。以微生物为宿主研究异黄酮代谢,则需要将整个相关代谢途径的多酶体系组装到工程菌种,从而进行表达及代谢研究,这就需要用到多基因的转化和共表达技术。综合应用了多基因单载体和多基因多载体方法,将大豆异黄酮代谢途径中的五个关键酶基因导入到大肠杆菌中,对异黄酮代谢途径在大肠杆菌中的构建和表达进行了研究和探索,获得了含有五个外源基因的重组大肠杆菌;重组菌经IPTG诱导,以L-酪氨酸为底物进行发酵,发酵产物经过HPLC测定,结果表明和空白对照相比有新的代谢产物生成,初步断定为异黄酮类化合物。  相似文献   

2.
丙酮酸甲酸裂解酶(pyruvate format-lyas,PFL)是厌养或兼性厌养微生物中,代谢途径的关键酶之一,为了进一步研究其功能,我们以大肠杆菌JM109菌株基因组DNA为模板,进行PCR扩增大肠杆菌中的pfl基因,为测序方便将所得DNA片段连接到pMD18-T载体上,将测序正确后的pfl基因连接到表达载体pET-22b(+)中,重组表达载体在大肠杆菌BL21(DE3)中诱导表达, 通过SDS-PAGE电泳分析,在分子量为85kDa处出现新生的蛋白条带。利用金属亲和层析对添加了6×组氨酸标签的PFL进行纯化,对PFL的酶学性质进行了研究。结果表明:此酶的最适温度为35 ℃,最适pH为7.5,米氏常数Km=2.3mmol,Tm=49.9℃。  相似文献   

3.
利用高保真聚合酶从运动发酵单胞茵中克隆出丙酮酸脱羧酶基因,加A后克隆到pGM-T载体,测序验证无误.经酶切、连接、转化到表达栽体pUC-18.形成重组质粒pUC-18一pdc,转化到大肠杆菌TOPl0中,经定性定量分析丙酮酸脱羧酶基因在大肠杆菌中高效表达,成功构建出乙醛的代谢途径.  相似文献   

4.
酿酒酵母gpd1和hor2基因在大肠杆菌中的共表达   总被引:4,自引:1,他引:3  
利用途径工程的方法,在大肠杆菌中构建一条新的产甘油的代谢途径。从酿酒酵母(Saccharomyces cerevisiae)克隆3-磷酸甘油脱氢酶基因(gpd1)和3-磷酸甘油酯酶基因(hor2),并将两个基因串连到启动子trc的下游,构建由trc启动子控制的能高效表达的多顺反子重组质粒pSE-gpd1-hor2,将重组质粒导入大肠杆菌BL21菌株中,构建得到的重组菌株GxB-gh能将葡萄糖转化为甘油。结果表明重组菌株GxB-gh以葡萄糖为底物进行发酵,甘油产量为46.67g/L,葡萄糖的转化率为42.87%。这为利用工程菌绿色生产甘油进行了前期的探索,也为进一步构建能生产1,3-丙二醇的工程菌打下了良好的基础。  相似文献   

5.
酮酸脱羧酶作为异戊醇生物合成的关键酶,不存在于大肠杆菌中。以乳酸乳球菌的基因组DNA为模板,经过PCR扩增得到酮酸脱羧酶基因kivD(rbs),插入到大肠杆菌高效表达载体pET-28a(+)上形成pET-kivD(rbs),重组质粒热击转化进大肠杆菌BL21(DE3)中,其成功表达了酮酸脱羧酶。对发酵产物进行分析,检测到了微量的目标产物—异戊醇。  相似文献   

6.
李金  韩瑞枝  许国超  董晋军  倪晔 《微生物学报》2015,55(11):1427-1436
摘要:【目的】通过克隆来源于糖丁基梭菌(Clostridium saccharobutylicum DSM13864)丁醇合成途径的关键酶基因(thlA,bcs-operon和adhE),构建产丁醇大肠杆菌。【方法】以Clostridium saccharobutylicum DSM13864的基因组为模板,分别扩增丁醇途径关键酶基因thlA,bcs-operon(crt-bcd1-etfB2-fixB2-hbd)和adhE,构建了两个重组质粒pETDuet-bcs和pRSFDuet-thlA-adhE,并成功转入E.coli JM109(DE3)实现异源表达,使大肠杆菌具备产丁醇能力。在半厌氧条件下进行重组菌的发酵,并研究不同培养基对产丁醇的影响。【结果】该重组菌在半厌氧条件下经摇瓶发酵丁醇产量达到25.4 mg/L,通过优化培养基后,在TB发酵培养基中丁醇产量可达到34.1 mg/L。【结论】通过构建重组共表达质粒,将糖丁基梭菌来源的丁醇途径关键酶基因在大肠杆菌中表达,成功构建产丁醇大肠杆菌。该研究提供了一株易于操作的丁醇发酵重组大肠杆菌,避免了传统梭菌发酵丁醇生产中苛刻的厌氧条件、易产孢子等限制问题。  相似文献   

7.
目的:应用P. pastoris的pAOX1表达系统分泌表达重组木糖异构酶.方法:用PCR法从大肠杆菌基因组中扩增木糖异构酶基因(xi).用EcoRⅠ和NotⅠ双酶切将其基因克隆进P. pastoris表达载体.通过电转法将其木糖异构酶基因重组于P. pastoris基因组,筛选G418抗性700μg/ml的重组子作为工程菌GS115(pPIC9K-xi).在摇瓶中发酵用甲醇诱导表达重组木糖异构酶.用SDS-PAGE分析重组蛋白的表达情况,用糖酵解法对表达产物进行活性分析.结果:木糖异构酶基因在pAOX1的调控下,在P. pastoris中经甲醇诱导能分泌表达,摇瓶发酵2d表达量为35mg/L,表达产物具有代谢木糖的作用.结论:成功地克隆了大肠杆菌的木糖异构酶基因,并实现用pAOX1系统在P. pastoris中表达中木糖异构酶,为用P. pastoris规模化生产重组木糖异构酶奠定了基础.  相似文献   

8.
核糖核酸酶HII (RNaseHII)能有效降解RNA和DNA杂交链中的RNA链。为进一步研究其功能 ,利用大肠杆菌XL1blue为模板 ,相应的寡聚脱氧核苷酸为引物 ,PCR扩增大肠杆菌RNaseHII(rnh 2 )基因 ,并将目的基因连接到克隆载体 pUC18上 ,经测序确认无误 ,分别亚克隆到能够进行IPTG诱导的表达载体pTrcHisC和进行温度诱导的表达载体pBV2 2 0上。重组质粒转化到大肠杆菌DH5α细胞中获得高效表达。在载体pTrcHisC和 pBV2 2 0中目的蛋白RNaseHII的表达量均超过菌体总蛋白的 2 0 % ,且表达产物以稳定的包涵体形式存在。此项工作为以后目的蛋白的纯化提供了有利条件 ,并为研究其结构和功能奠定了基础。  相似文献   

9.
根据NCBI中的木糖还原酶基因序列设计引物,利用高保真聚合酶克隆树干毕赤酵母木糖还原酶基因,加A后克隆到质粒pGM-T中,测序验证.然后将目的基因克隆到舍有强启动子的穿梭表达载体p424GPD中,构建含有XYL1基因的重组质粒p424GPD-XYL1.将p424GPD-XYL1转化到大肠杆菌中,提取总蛋白,聚丙烯酰胺凝胶电泳分析.酶活测定确定木糖还原酶基因XYL1在大肠杆菌中得到活性表达,表明表达载体构建成功.表达载体的成功构建为后续构建重组酿酒酵母利用木糖发酵奠定基础.  相似文献   

10.
首次从丙酮丁醇梭菌(Clostridium acetobutylicum ATCC824)中克隆得到L-乳酸脱氢酶(L-lactate dehydrogenase,ldhL)基因,并将其连接到pSE380表达载体上,得到重组质粒pSE380ldhL,将重组质粒转化到乳酸脱氢酶和丙酮酸裂解酶缺陷的Escherichia coli FMJl44大肠杆菌中进行表达。SDS-PAGE分析表达产物的分子量约为34kD,摇瓶发酵后用HPLC检测分析L-乳酸产量为2.4g/L,纯度达到99.9%,不需要再进行手性分离,为以后在工业上生物法生产高纯度的L-乳酸打下基础。  相似文献   

11.
Carotenoids are of great commercial interest and attempts are made to produce different carotenoids in transgenic bacteria and yeasts. Development of appropriate systems and optimization of carotenoid yield involves transformation with several new genes on suitable plasmids. Therefore, the non-carotenogenic bacterium Escherichia coli JM101 was transformed in our study with several genes that mediated the biosynthetic production of the carotenoid zeaxanthin in this host. Selection of plasmids for the introduction of five essential genes for zeaxanthin formation showed that a pACYC-derived plasmid was the best. Multiplasmid transformation generally decreased production of zeaxanthin. By cotransformation with different plasmids, limitations in the biosynthetic pathway were found at the level of geranylgeranyl-pyrophosphate synthase and β-carotene hydroxylase. In our study a maximum zeaxanthin content of 289 μg/g dry weight was obtained. This involved the construction of a plasmid that mediated high-level expression of β-carotene hydroxylase. The level of expression was demonstrated on protein gels and solubilization by the mild detergent Brij 78 revealed that a significant portion of the expressed enzyme is located in the E. coli membranes where it can exert its catalytic function. Based on the results obtained, new strategies for vector construction and strain selection were proposed which could increase the present concentrations drastically. Optimal growth conditions of the transfomed E. coli strains for carotenoid formation were found at a temperature of 28 °C and a cultivation period of 2 days. Received: 28 November 1996 / Received revision: 24 March 1997 / Accepted: 27 April 1997  相似文献   

12.
Seo MC  Shin HD  Lee YH 《Biotechnology letters》2003,25(15):1243-1249
The expression characteristic of two granule-associated genes, phaP and phaR, in a recombinant E. coli harboring the phbCAB operon was investigated. Polybetamydroxybutyrate (PHB) accumulation increased up from 16% to 57% (w/w) after transformation of the granule-associated genes due to the stabilization of PHB granules rather than by a direct effect on PHB biosynthetic enzymes. The morphology of PHB granules also varied depending on the transformed phaP and phaR genes.  相似文献   

13.
Flavones are plant secondary metabolites with potent pharmacological properties. We report the functional expression of FSI, a flavonoid 2-oxoglutarate-dependent dioxygenase-encoding flavone synthase from parsley in Escherichia coli. This expression allows the biosynthesis of various flavones from phenylpropanoid acids in recombinant E. coli strains simultaneously expressing five plant-specific flavone biosynthetic genes. The gene ensemble consists of 4CL-2 (4-coumarate:CoA ligase) and FSI (flavone synthase I) from parsley, chsA (chalcone synthase) and chiA (chalcone isomerase) from Petunia hybrida, and OMT1A (7-O-methyltransferase) from peppermint. After a 24-h cultivation, the recombinant E. coli produces significant amounts of apigenin (415 μg/l), luteolin (10 μg/l), and genkwanin (208 μg/l). The majority of the flavone products are excreted in the culture media; however, 25% is contained within the cells. The metabolic engineering strategy presented demonstrates that plant-specific flavones are successfully produced in E. coli for the first time by incorporating a soluble flavone synthase confined only in Apiaceae.  相似文献   

14.
The increased synthesis of building blocks of IPP (isopentenyl diphosphate) and DMAPP (dimethylallyl diphosphate) through metabolic engineering is a way to enhance the production of carotenoids. Using E. coli as a host, IPP and DMAPP supply can be increased significantly through the introduction of foreign MVA (mevalonate) pathway into it. The MVA pathway is split into two parts with the top and bottom portions supplying mevalonate from acetyl-CoA, and IPP and DMAPP from mevalonate, respectively. The bottom portions of MVA pathway from Streptococcus pneumonia, Enterococcus faecalis, Staphylococcus aureus, Streptococcus pyogenes and Saccharomyces cerevisiae were compared with exogenous mevalonate supplementation for β-carotene production in recombinant Escherichia coli harboring β-carotene synthesis genes. The E. coli harboring the bottom MVA pathway of S. pneumoniae produced the highest amount of β-carotene. The top portions of MVA pathway were also compared and the top MVA pathway of E. faecalis was found out to be the most efficient for mevalonate production in E. coli. The whole MVA pathway was constructed by combining the bottom and top portions of MVA pathway of S. pneumoniae and E. faecalis, respectively. The recombinant E. coli harboring the whole MVA pathway and β-carotene synthesis genes produced high amount of β-carotene even without exogenous mevalonate supplementation. When comparing various E. coli strains – MG1655, DH5α, S17-1, XL1-Blue and BL21 – the DH5α was found to be the best β-carotene producer. Using glycerol as the carbon source for β-carotene production was found to be superior to glucose, galactose, xylose and maltose. The recombinant E. coli DH5α harboring the whole MVA pathway and β-carotene synthesis genes produced β-carotene of 465 mg/L at glycerol concentration of 2% (w/v).  相似文献   

15.
16.
Abstract

The emergence of drug resistance in Streptococcus pneumoniae (Spn) is a global health threat and necessitates discovery of novel therapeutics. The serine acetyltransferase (also known as CysE) is an enzyme of cysteine biosynthesis pathway and is reported to be essential for the survival of several pathogenic bacteria. Therefore, it appears to be a very attractive target for structure–function understanding and inhibitor design. This study describes the molecular cloning of cysE from Spn in the pET21c vector and efforts carried out for expression and purification of active recombinant CysE. Significant expression of recombinant Spn cysE could be achieved in codon optimized BL21(DE3)-RIL strain as opposed to conventional BL21(DE3) strain. Analysis of codon adaptation index (CAI) with levels of eukaryotic genes and prokaryotic cysEs expressed in heterologous E. coli host suggests that codon optimized E. coli BL21(DE3)-RIL may be a better host for expressing genes with low CAI. Here, an efficient protocol has been developed for recovery of recombinant Spn CysE in soluble and biologically active form by the usage of nonionic detergent Triton X-100 at a concentration as low as 1%. Altogether, this study reports a simple strategy for producing functionally active Spn CysE in E. coli.  相似文献   

17.
Summary Transfer of chromosomal genes between Escherichia coli K12 and Enterobacter aerogenes was carried out by P1-mediated transduction as well as by transformation of genes cloned in vitro on plasmid vectors. The efficient expression of E. coli genes in E. aerogenes probably reflects the existance of a poor restriction system in the latter, and suggests that this strain might be useful as a recipient of genetic information from E. coli.  相似文献   

18.
Natural β-carotene has received much attention as consumers have become more health conscious. Its production by various microorganisms including metabolically engineered Escherichia coli or Saccharomyces cerevisiae has been attempted. We successfully created a recombinant E. coli with an engineered whole mevalonate pathway in addition to β-carotene biosynthetic genes and evaluated the engineered cells from the aspects of metabolic balance between central metabolism and β-carotene production by comparison with conventional β-carotene producing recombinant E. coli (control) utilizing a native methylerythritol phosphate (MEP) pathway using bioreactor cultures generated at different temperatures or pHs. Better production of β-carotene was obtained in E. coli cultured at 37°C than at 25°C. A two-fold higher titer and 2.9-fold higher volumetric productivity were obtained in engineered cells compared with control cells. Notably, a marginal amount of acetate was produced in actively growing engineered cells, whereas more than 8 g/L of acetate was produced in control cells with reduced cell growth at 37°C. The data indicated that the artificial operon of the whole mevalonate pathway operated efficiently in redirecting acetyl-CoA into isopentenyl pyrophosphate (IPP), thereby improving production of β-carotene, whereas the native MEP pathway did not convert a sufficient amount of pyruvate into IPP due to endogenous feedback regulation. Engineered cells also produced lycopene with a reduced amount of β-carotene in weak alkaline cultures, consistent with the inhibition of lycopene cyclase.  相似文献   

19.
We attempted to optimize the production of zeaxanthin in Escherichia coli by reordering five biosynthetic genes in the natural carotenoid cluster of Pantoea ananatis. Newly designed operons for zeaxanthin production were constructed by the ordered gene assembly in Bacillus subtilis (OGAB) method, which can assemble multiple genes in one step using an intrinsic B. subtilis plasmid transformation system. The highest level of production of zeaxanthin in E. coli (820 μg/g [dry weight]) was observed in the transformant with a plasmid in which the gene order corresponds to the order of the zeaxanthin metabolic pathway (crtE-crtB-crtI-crtY-crtZ), among a series of plasmids with circularly permuted gene orders. Although two of five operons using intrinsic zeaxanthin promoters failed to assemble in B. subtilis, the full set of operons was obtained by repressing operon expression during OGAB assembly with a pR promoter-cI repressor system. This result suggests that repressing the expression of foreign genes in B. subtilis is important for their assembly by the OGAB method. For all tested operons, the abundance of mRNA decreased monotonically with the increasing distance of the gene from the promoter in E. coli, and this may influence the yield of zeaxanthin. Our results suggest that rearrangement of biosynthetic genes in the order of the metabolic pathway by the OGAB method could be a useful approach for metabolic engineering.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号