首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
2.
3.
转基因红鲤体细胞的核移植   总被引:2,自引:0,他引:2  
赵浩斌  朱作言 《遗传学报》2002,29(5):406-412
以F4代转hGH基因红鲤体细胞(肾脏和尾鳍)及培养18代的F4代转hGH基因红鲤尾鳍细胞为核供体,泥鳅或黄河鲤成熟卵为受体,进行了核移植,以探讨外源F4代转基因鱼体外源基因的分布与存在形式,稳定性和克隆转基因鱼的可能性。F4代红鲁肾脏细胞核与泥鳅卵配合的核移植胚胎有12.4%发育到囊胚,0.33%发育到神经胚;F4代尾鳍细胞核移入泥鳅卵后的重组胚发育到囊胚,神经胚、肌节期和肌肉效应期的胚胎分别为24.5%、0.3%、0.2%和0.1%;对照卵无发育。F4代红鲤尾鳍培养细胞与黄河鲤卵子配合的重组胚胎有50.53%发育到囊胚,5.69%发育到原肠胚,0.53%发育到神经胚,0.4%发育到肌节期。说明由于同种细胞核与卵细胞的相容性高于异种核卵的相容性,早期发育率高;而由于培养细胞的异倍化,后期的发育率降低。用PCR技术对供体鱼不同个体及同一体不同组织外源基因检测,结果100%个体为阳性鱼,而且不同组织的阳性率也是100%,说明外源基因均匀分布在不同组织中。无论F4代转基因鱼的肾脏细胞、尾鳍细胞还是培养的尾鳍细胞作核移植供体,核移植胚胎中hGH基因的检出率为100%。说明F4代转基因红鲤个体不同细胞都存在hGH基因,而且经长期培养不会丢失。表明F4代转基因红鲤中的外源hGH基因已基本稳定,体细胞核移植可以作为获得同质化转基因鱼的有效手段,但核移植效率还很低。另外还讨论了核质的相容性、细胞周期的协调、染色体的变异等因素对核移植的影响。  相似文献   

4.
In this study, we verified nuclear transport activity of an artificial nuclear localization signal (aNLS) in medaka fish (Oryzias latipes). We generated a transgenic medaka strain expresses the aNLS tagged enhanced green fluorescent protein (EGFP) driven by a medaka beta‐actin promoter. The aNLS‐EGFP was accumulated in the nuclei of somatic tissues and yolk nuclei of oocytes, but undetectable in the spermatozoa. The fluorescent signal was observed from immediately after fertilization by a maternal contribution. Furthermore, male and female pronuclei were visualized in fertilized eggs, and nuclear dynamics of pronuclear fusion and subsequent cleavage were captured by time‐lapse imaging. In contrast, SV40NLS exhibited no activity of nuclear transport in early embryos. In conclusion, the aNLS possesses a strong nuclear localization activity and is a useful probe for fluorescent observation of the pronuclei and nuclei in early developmental stage of medaka.  相似文献   

5.
To develop nuclear transplantation techniques for the medaka Oryzias latipes, nuclei of cultured cells from transgenic fish were transplanted into unfertilized eggs of the orange-red variety of O. latipes, without enucleation, in two experimental series. In the first experimental series, fibroblast cells cultured from the adult caudal fin were used as donors, which carried the green fluorescent protein (GFP) gene driven by the promoter of the medaka elongation factor 1alpha-A gene. Wild-type body color was another donor genetic marker used in this experimental series. In the second experimental series, cells cultured from 6-day-old embryos were used as donors, which carried the GFP genetic marker driven by the promoter of the medaka beta-actin gene. From more than 1000 eggs transplanted in each experiment, a considerable number of nuclear transplants developed to various embryonic stages showing stage- and tissue-specific expression of the donor genetic markers, although the expression was mosaic in many cases. Three and six of the transplanted eggs in the first and second experimental series (0.3 and 0.5%, respectively) hatched, and the hatchlings expressing the genetic markers survived for up to 3 weeks. The chromosome number varied among cells in a single transplant embryo. The results obtained in these experiments may help future cloning efforts in fish.  相似文献   

6.
Hosaka K  Sato K 《Human cell》2002,15(4):224-229
This study was carried out to transform embryonic stem (ES) cells and to produce the reconstituted embryos derived from transgenic ES cell nuclei. Then, in vitro/vivo developmental potency of transgenic ES cells were compared to that of control ES cells (non-transgenic ES cells) in the reconstituted embryos. Unfertilized B6D2F1 ooplasm at metaphase II (M II) and two kinds of ES cell lines, 129SV and transgenic (tg) 129SV transformed by EGFP gene, were used as nuclear recipients and nuclear donors, respectively. The M II chromosome-spindle complex was aspirated into the pipette with a minimal volume of ooplasm. After enucleation, the ES cell nuclei was injected into the enucleated ooplasm directly. Then, reconstituted embryos were activated in SrCl2, and they were cultured in HTF medium. There was no difference of developmental rate between reconstituted embryos derived from the control (non-transgenic) and the tg ES cells. From this result, we indicated that transgenic ES cells might not change the property of peculiarity of the ES cell by gene transfer. The expression of GFP gene in the embryos was observed by fluorescence microscope at the 4-cell and more stage. As comparison with development of the embryos derived from the control and tg ES cells, the difference of the development could not be confirmed between the two cell groups. When the reconstituted embryos derived from the control and tg ES cells were transferred into oviduct or uterus of pseudopregnant females, fetuses were observed 13.5 days post coitum. However, in all fetuses, developmental arrest and regression were seen 19.5 days post coitum.  相似文献   

7.
泥鳅雄核发育纯合二倍体的产生   总被引:10,自引:0,他引:10  
刘汉勤  易泳兰  陈宏溪 《水生生物学报》1987,11(3):241-246,i005
以机械方法挑去泥鳅(Misgurnus anguillicaudatus)×大鳞副泥鳅(Paramisgurnus dabryanus)(♀)属间杂交受精卵的雌核,得到泥鳅雄核发育单倍体胚胎。将这种单倍体胚胎的囊胚细胞核移植到大鳞副泥鳅去核卵中,获得了243个原肠胚胎,其染色体鉴定表明,29.6%的核移植体的染色体发生了加倍。在另一实验组中,从769个核移植卵得到了5尾2cm以上的个体。尾鳍染色体鉴定、肌肉LDH同工酶电泳和形态鉴别表明,这5尾核移植体为泥鳅雄核发育纯合二倍体。  相似文献   

8.
Embryonic and genetic manipulation in fish   总被引:16,自引:2,他引:14  
Zhu ZY  Sun YH 《Cell research》2000,10(1):17-27
Fishes,the biggest and most diverse community in vertebrates are good experimental models for studies of cell and developmental biology by many favorable characteristics.Nuclear transplantation in fish has been thoroughly studied in China since 1960s.Fish nuclei of embryonic cells from different genera were transplanted into enucleated eggs generating nucleo-cytoplasmic hybrids of adults.Most importantly,nuclei of cultured goldfish kidney cells had been reprogrammed in enucleated eggs to support embryogenesis and ontogenesis of a fertile fish.This was the first case of cloned fish with somatic cells.Based on the technique of microinjection,recombinant MThGH gene has been transferred into fish eggs and the firsh batch of transgenic fish were produced in 1984.The behavior of foreign gene was characterized and the onsed of the foreign gene replication occurred between the blastula to gastrula stages and random integration mainly occurred at later stages of embryogenesis.This eventually led to the transgenic mosaicism.The MThGH-transferred common carp enhanced growth rate by 2-4 times in the founder juveniles and doubled the body weight in the adults.The transgenic common carp were more efficient in utilizing dietary protein than the controls.An “all-fish” gene construct CAgcGH has been made by splicing the common carp β-actin gene (CA) promoter onto the grass carp growth hormone gene (grGH) coding sequence.The CAgcGH-transferred Yellow River Carp have also shown significantly fast-growth trait.Combination of techniques of fish cell culture,gene transformation with cultured cells and nuclear transplantation should be able to generate homogeneous strain of valuable transgenic fish to fulfil human requirement in 21^st century.  相似文献   

9.
Reprogramming of adult somatic cell nuclei to pluripotency has been unsuccessful in non-mammalian animals, primarily because of chromosomal aberrations in nuclear transplants, which are considered to be caused by asynchrony between the cell cycles of the recipient egg and donor nucleus. In order to normalize the chromosomal status, we used diploidized eggs by retention of second polar body release, instead of enucleated eggs, as recipients in nuclear transfer of primary culture cells from the caudal fin of adult green fluorescent protein gene (GFP) transgenic medaka fish (Oryzias latipes). We found that 2.7% of the reconstructed embryos grew into adults that expressed GFP in various tissues in the same pattern as in the donor fish. Moreover, these fish were diploid, fertile and capable of passing the marker gene to the next generation in Mendelian fashion. We hesitate to call these fish 'clones' because we used non-enucleated eggs as recipients; in effect, they may be chimeras consisting of cells derived from diploid recipient nuclei and donor nuclei. In either case, fish adult somatic cell nuclei were reprogrammed to pluripotency and differentiated into a variety of cell types including germ cells via the use of diploidized recipient eggs.  相似文献   

10.
11.
人-山羊异种核移植胚胎发育的初步研究   总被引:2,自引:0,他引:2  
以体外分离培养的人胚胎成纤维细胞为核供体,经血清饥饿培养后,通过显微操作技术移入山羊去核卵母细胞中,采用化学方法激活重组胚.通过体外培养观察,2-细胞胚胎发育率可达51.33%,4-细胞发育率为31.42%,但发育至桑椹胚阶段的胚胎数目大大减少,仅为9.73%.虽然目前尚未能获得异种核移植囊胚,但实验结果说明山羊成熟卵母细胞可以支持人体细胞核完成重编程,人-山羊异种体细胞核移植重组胚可在体外完成其早期发育.  相似文献   

12.
13.
Interspecies somatic cell nuclear transfer (iSCNT) has emerged as an important tool for studying nucleo-cytoplasmic interactions and cloning of animals whose oocytes are difficult to obtain. This study was designed to explore the feasibility of employing transgenic fibroblasts as donor cells for iSCNT. The study examined the chromatin morphology, in vitro development, and expression of an enhanced green fluorescent protein (EGFP) gene in porcine- and bovine-cloned embryos produced by iSCNT of fetal fibroblast transfected with a pLNbeta-EGFP retroviral vector. Parthenogenetic and transfected or nontransfected intraspecies SCNT embryos were used as controls for comparison. Analysis of data revealed that xenogenic oocyte was able to reprogram somatic cells of different genus and supports their in vitro development to the blastocyst stage. However, the developmental rates of transgenic iSCNT embryos to the blastocyst stage were significantly lower than those of intraspecies SCNT embryos. The reduction in development rates was however, not due to integration of the transgene as the lower (P < 0.05) development rates of the intraspecies SCNT porcine or bovine embryos did not differ between transgenic and nontransgenic groups. Expression of EGFP was observed in 100% of blastocysts and mosaicism was not observed. Furthermore, after iSCNT of porcine or bovine donor nuclei into xenogenic ooplasm, patterns of nuclear remodeling in reconstructed embryos were similar. In conclusion, our data demonstrated the feasibility of producing transgenic iSCNT embryos. To our knowledge, this is the first report of transgenic cloned embryo production by iSCNT approach. In the future, this may provide a powerful research tool for studying developmental events in domestic animals and provide marked cell lines for other genetic manipulations.  相似文献   

14.
In order to investigate whether foreign genes can be used as genetic markers of donor nuclei in fish nuclear transplantation, expression of the GFP gene derived from donor nuclei was examined in nuclear transplants in medaka (Oryzias latipes). Embryonic nuclei were obtained from blastula embryos produced by crossing of transgenic fish of the wild-type strain heterozygous for the GFP gene with nontransgenic ones or by mutual crossing between transgenic fish. The GFP gene was driven by the promoter of the medaka elongation factor gene, EF-1alpha-A, which is known to induce GFP expression in many tissues except for the muscle in the transgenic fish. The nuclei were transplanted into nonenucleated unfertilized eggs of the orange-red strain. Adult nuclear transplants were successfully obtained at the rate of about 2% of the operated eggs. They were triploid and had no reproductive potential. The GFP gene was expressed in embryos, fry, and adults of nuclear transplants in a pattern similar to that in the transgenic fish. These results indicate that GFP is useful as a foreign genetic marker of donor nuclei in fish nuclear transplantation.  相似文献   

15.
16.
蟾蜍种间核移植胚胎发育早期LDH同工酶的表现   总被引:2,自引:1,他引:1  
张遵义  梁桂霞 《动物学报》1993,39(3):280-286
利用聚丙烯酰胺凝胶电泳,对中华大蟾蜍(Bufo bufo比gargarizans)与花背蟾蜍(Bufo raddei)种间核移植胚胎发育早期六个不同阶段中全胚胎的乳酸脱氢酶(LDH)同工酶进行了分析。酶谱比较的结果表明:在正、反种间移核胚胎中,供体核LDH基因的活动开始表现于尾芽胚期;此前,杂种胚胎中LDH同工酶谱类型与受体一致。  相似文献   

17.
Nashun B  Akiyama T  Suzuki MG  Aoki F 《Epigenetics》2011,6(12):1489-1497
The genome of differentiated somatic nuclei is remodeled to a totipotent state when they are transplanted into enucleated oocytes. To clarify the mechanism of this genome remodeling, we analyzed changes in the composition of core histone variants in nuclear-transferred embryos, since recent evidence has revealed that chromatin structure can be remodeled as a result of variant histone replacement. We found that the donor cell-derived histone H3 variants H3.1, H3.2, and H3.3, as well as H2A and H2A.Z, were rapidly eliminated from the chromatin of nuclei transplanted into enucleated oocytes. Accompanying this removal, oocyte-stored histone H3 variants and H2A.X were incorporated into the transplanted nuclei, while the incorporation of H2A and H2A.Z was minimal or not detected. The incorporation of these variant histones was DNA replication-independent. These results suggest that most core histone H2A and H3 components are dynamically exchanged between donor nuclei and recipient cytoplasm, which further suggests that replacement of donor cell histones with oocyte-stored histones may play a key role in genome remodeling in nuclear-transferred embryos. In addition, the incorporation patterns of all of the histone variants in the nuclear-transferred embryos were virtually the same as in the fertilized embryos. Only the incorporation pattern of H3.1 differed; it was incorporated into the transplanted donor nuclei, but not in the pronuclei of fertilized embryos. This result suggests that the incorporation of H3.1 has a detrimental effect on the process of genome remodeling and contributes to the low success rate of somatic nuclear cloning.  相似文献   

18.
《Epigenetics》2013,8(12):1489-1497
The genome of differentiated somatic nuclei is remodeled to a totipotent state when they are transplanted into enucleated oocytes. To clarify the mechanism of this genome remodeling, we analyzed changes in the composition of core histone variants in nuclear-transferred embryos, since recent evidence has revealed that chromatin structure can be remodeled as a result of variant histone replacement. We found that the donor cell-derived histone H3 variants H3.1, H3.2, and H3.3, as well as H2A and H2A.Z, were rapidly eliminated from the chromatin of nuclei transplanted into enucleated oocytes. Accompanying this removal, oocyte-stored histone H3 variants and H2A.X were incorporated into the transplanted nuclei, while the incorporation of H2A and H2A.Z was minimal or not detected. The incorporation of these variant histones was DNA replication-independent. These results suggest that most core histone H2A and H3 components are dynamically exchanged between donor nuclei and recipient cytoplasm, which further suggests that replacement of donor cell histones with oocyte-stored histones may play a key role in genome remodeling in nuclear-transferred embryos. In addition, the incorporation patterns of all of the histone variants in the nuclear-transferred embryos were virtually the same as in the fertilized embryos. Only the incorporation pattern of H3.1 differed; it was incorporated into the transplanted donor nuclei, but not in the pronuclei of fertilized embryos. This result suggests that the incorporation of H3.1 has a detrimental effect on the process of genome remodeling and contributes to the low success rate of somatic nuclear cloning.  相似文献   

19.
20.
Chromosomal abnormalities such as ploidy mosaicism have constituted a major obstacle to the successful nuclear transfer of adult somatic cell nuclei in lower vertebrates to date. Euploid mosaicism has been reported previously in well-developed amphibian transplants. Here, we investigated ploidy mosaicisms in well-developed transplants of adult somatic cell nuclei in medaka fish (Oryzias latipes). Donor nuclei from primary cultured cells from the adult caudal fin of a transgenic strain carrying the green fluorescent protein gene (GFP) were transferred to recipient nonenucleated eggs of a wild-type strain to produce 662 transplants. While some of the transplants developed beyond the body formation stage and several hatched, all exhibited varying degrees of abnormal morphology, limited growth and subsequent death. Twenty-one transplants, 19 embryos and two larvae, were selected for chromosomal analysis; all were well-developed 6-day-old or later embryonic stages exhibiting slight morphological abnormalities and the same pattern of GFP expression as that of the donor strain. In addition, all exhibited various levels of euploid mosaicism with haploid-diploid, haploid-triploid or haploid-diploid-triploid chromosome sets. No visible chromosomal abnormalities were observed. Thus, euploid mosaicism similar to that observed in amphibians was confirmed in well-developed nuclear transplants of fish.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号