首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
离子通道或离子转运体介导的离子跨膜运输是细胞中两种重要的离子跨膜运输方式。与离子通道介导的被动运输不同,离子转运体介导的离子跨膜转运是一种主动运输方式,具有多种独特的生物学特性。本文以Na^+/HCO_3^-共转运体(Na^+/HCO_3^-cotransporter,NBC)为例,对离子转运体的物理化学和电生理学基本原理及其特性进行分析与介绍。从本质上说,离子转运体是一种酶,本文首先从酶促反应的角度,对NBC介导的离子跨膜运输过程进行分析,介绍了离子转运体的化学计量比、表征离子转运效率的转换数及与此相关的离子转运体的运输通量等。本文进一步从热力学的角度对NBC介导Na^+和HCO_3^-跨膜运输的电生理学原理进行了较为详细的分析。通过热力学分析,本文阐释了NBC依据化学计量比决定其离子转运方向的原理。最后,本文对NBC化学计量比的实验测定和化学计量比的生理学意义,即NBC不同工作模式与其在特定组织中的具体生理学过程的关系,进行了讨论。  相似文献   

2.
离子通道或离子转运体介导的离子跨膜运输是细胞中两种重要的离子跨膜运输方式。与离子通道介导的被动运输不同,离子转运体介导的离子跨膜转运是一种主动运输方式,具有多种独特的生物学特性。本文以Na~+/HCO_3~-共转运体(Na~+/HCO_3~-cotransporter,NBC)为例,对离子转运体的物理化学和电生理学基本原理及其特性进行分析与介绍。从本质上说,离子转运体是一种酶,本文首先从酶促反应的角度,对NBC介导的离子跨膜运输过程进行分析,介绍了离子转运体的化学计量比、表征离子转运效率的转换数及与此相关的离子转运体的运输通量等。本文进一步从热力学的角度对NBC介导Na~+和HCO_3~-跨膜运输的电生理学原理进行了较为详细的分析。通过热力学分析,本文阐释了NBC依据化学计量比决定其离子转运方向的原理。最后,本文对NBC化学计量比的实验测定和化学计量比的生理学意义,即NBC不同工作模式与其在特定组织中的具体生理学过程的关系,进行了讨论。  相似文献   

3.
胰管细胞以至少6倍浓度差逆向分泌HCO3^-(人体浓度约140mmol/L)。HCO3^-跨顶膜转运的可能机制包括SLC26阴离子转运体的Cl-HCO3^-交换和囊性纤维化跨膜电导调节体(cystic fibrosis transmembrane conductance regulator,cFrR)对HCO3^-的传导扩散。SLC26家族成员介导上皮顶膜Cl^--HCO3^-交换,胰管中检测到SLC26A6和SLC26A3。共表达研究揭示,鼠类slc26a6和slc26a3通过slc26的STAS结构域与CFTR的R结构域相互作用,导致活性互相增强。研究显示这些交换体是产电的:slc26a6介导1Cl^--2HCO3^-交换,slc26a3介导2Cl^--1HCO3^-交换。近期slc26a6^-/-小鼠离体胰管研究显示,slc26a6介导大部分Cl^-依赖的HCO3^-跨顶膜分泌,与slc26a6的产电性一致。然而,因为人体能分泌非常高浓度的HCO3^-,SLC26A6在胰管HCO3^-分泌中的作用并不十分清楚。SLC26A6的作用只能在与人类似能分泌约140mmol/LHCO3^-的物种,如豚鼠中研究。现有的豚鼠研究数据显示,像slc26a6介导的1Cl^--2HCO3^-交换不可能完成这种高浓度差的HCO3^-分泌。另一方面,CFTR的HCO3^-电导性可以在理论上支持HCO3^-逆向分泌。所以,在豚鼠和人胰腺HCO3^-的分泌中,CFTR可能比SLC26A6发挥更大作用。  相似文献   

4.
在肾小管髓襻升支粗段(thick ascending limb,TAL),Cl-只能通过跨细胞途径进行重吸收,而约50%的Na+以及Ca2+和Mg2+通过旁细胞途径重吸收。位于上皮细胞间的紧密连接蛋白复合体可以调控旁细胞途径对离子的选择性和通透性,对肾小管的重吸收起重要作用。Claudin-10是紧密连接蛋白claudin家族的成员,可在TAL表达,但其功能尚不了解。  相似文献   

5.
Toll样受体(Toll-like receptors, TLRs)在不同的天然免疫应答中可以识别和激活不同的病原体相关分子模式(pathogenassociated molecular patterns, PAMPs),进而导致炎症。而钠氢交换体(Na~+/H~+exchanger, NHE)不仅具有调节胞内pH值和细胞容积、维持腔体微环境、影响营养吸收的作用,而且与细胞的增殖、迁移、凋亡相关。在炎症情况下,NHE的活性和膜蛋白表达都受到抑制。结肠上皮细胞TLR2激活后可通过MyD88非依赖性途径抑制NHE1活性,其抑制作用的机制与Src的聚集和PI3Ks的磷酸化有关。长期脂多糖(lipopolysaccharides, LPS)暴露可激活肠巨噬细胞TLR4,通过MyD88依赖性途径(即TLR4/MyD88/NF-κB通路)导致炎症发生,并加速NHE1胞内降解,从而抑制NHE1活性;但短时间LPS暴露却提高NHE1活性。TLR5的激活可使NHE3活性增高。结肠炎患者和模型动物肠道巨噬细胞NHE3活性或/和表达量下降。在肾小管上皮细胞中,基底侧LPS刺激通过激活TLR4/MyD88/MAPK/ERK信号通路抑制管腔侧NHE3的活性,而管腔侧LPS刺激则激活TLR4/MyD88依赖性PI3K-AKT-mTOR信号通路,引起基底侧NHE1活性抑制,进而继发影响管腔侧NHE3功能。  相似文献   

6.
多聚免疫球蛋白受体(pIgR)在粘膜免疫中的重要功能   总被引:1,自引:0,他引:1  
多聚免疫球蛋白受体(pIgR)属于Ⅰ型跨膜糖蛋白,可与多聚免疫球蛋白A和多聚免疫球蛋白M特异性结合,通过穿胞转运,将它们从上皮细胞基底侧膜转运到顶膜,并最终分泌到外分泌液中去. 在此过程中,多聚免疫球蛋白受体的细胞外段被水解,释放出与多聚免疫球蛋白A或多聚免疫球蛋白M相结合的细胞外段(又称为分泌成分). 分泌成分是sIgA分子的重要组成部分,直接参与sIgA的粘膜防御功能,而且在被动粘膜免疫中也有重要作用. 多聚免疫球蛋白受体通过介导细胞内多聚免疫球蛋白的转运,可以在粘膜的腔面阻止病原体粘附,在上皮细胞内中和病毒,也可以将固有层内的抗原分泌出去. 因此,多聚免疫球蛋白受体的有效分泌是多聚免疫球蛋白发挥粘膜防御功能的必要条件. 但在某些情况下,该受体也可以介导微生物对上皮屏障的入侵. 多聚免疫球蛋白受体是高度 N -糖基化的,其分子中独特的糖链结构,可能与受体的穿胞转运、sIgA在粘膜的正确定位,以及抗原对上皮细胞的粘附有关. 多聚免疫球蛋白受体和分泌成分参与的多重分子机制,使它们在粘膜免疫中起着举足轻重的作用.  相似文献   

7.
为了确定人高亲和力钠离子依赖性二羧酸共转运蛋白(high-affinity sodium-dependent dicarboxylate co-transporter, SDCT2,NaDC3)在细胞内的定位,构建了SDCT2与增强型绿色荧光蛋白(EGFP)的融合蛋白表达载体,并转染肾小管上皮细胞LLC-PK1,激光共聚焦显微镜观察显示,SDCT2蛋白主要定位于细胞的基底侧膜上.同时将SDCT2-EGFP融合基因mRNA显微注射到爪蟾卵母细胞中表达,可见融合蛋白的绿色荧光仅分布在细胞膜上.为了进一步确定该蛋白质的亚细胞定位信号序列,将SDCT2基因的N端及C端分别缺失,并构建缺失突变体与EGFP的融合蛋白表达载体,将它们转染到LLC-PK1中,观察SDCT2 缺失体在细胞内的分布情况.结果显示,N端缺失的SDCT2蛋白主要位于细胞质中,顶膜和基底侧膜上也有表达;C端缺失的SDCT2蛋白主要位于基底侧膜上,顶膜几乎没有表达,细胞质中表达很少.免疫组化结果也显示,SDCT2只表达于人近端肾小管上皮细胞的基底侧膜.这表明SDCT2蛋白的N端序列对其亚细胞定位是必需的,人SDCT2蛋白的基底膜定位信号位于N端序列中.  相似文献   

8.
菌紫质的结构和功能研究进展   总被引:2,自引:0,他引:2  
紫膜中具有质子泵功能的菌紫质(bR)是整合膜蛋白,它是7个α螺旋跨膜蛋白家族的基本原型.目前,具有光驱动质子泵的bR是最典型的高效离子转运蛋白之一.它很可能成为其载体转运机制在分子甚至原子水平上被阐明的第一个膜蛋白.概述了近年来对菌紫质结构,光循环和质子泵机理研究的进展.  相似文献   

9.
赵伟  傅国辉 《生命科学》2007,19(6):607-613
阴离子交换蛋白(anion exchanger,AE)家族由AE1、AE2和AE3三个成员组成,介导哺乳动物细胞普遍存在的C1一/HCO,跨膜交换过程,进而调节细胞内pH值(intracellular pH,pHi)和细胞体积。在极化的上皮细胞,Cl^-/HCO3^-的跨膜交换也是经上皮的酸碱分泌和重吸收的重要调节因子。AE1丰富地表达在红细胞,其N末端截短形式也表达在肾脏;AE2广泛地表达在各种组织,但以胃最为丰富;AE3表达在脑、视网膜和心脏。近年来对AE家族结构与功能的研究取得的新进展揭示了AE家族在某些病理过程中发挥重要作用。本文就AE家族的结构与功能及其病理作用进行了讨论。  相似文献   

10.
水孔蛋白是由多基因编码的介导水分快速跨膜转运的膜内在蛋白。植物水孔蛋白分为4类,具有多功能性,包括介导水分的快速跨膜转运,参与气孔运动,参与叶肉内CO_2的运输,调节植物对中性分子(甘油、NH_3、尿素)和营养元素(硼、硅)的吸收,参与植物体内的氧化应激及信号的跨膜转导等。  相似文献   

11.
小麦根H^+—ATPase与脂质体的重组方法研究   总被引:1,自引:0,他引:1  
液泡是植物细胞中的大型细胞器,除了维持细胞的渗透压和贮存代谢的中间产物外,其内部还含有多种水解酶、pH值偏酸且具有类似溶酶体的功能。液泡膜ATPase是一种新类型的质子泵。由质子泵作用形成的跨液泡膜质子电化学梯度和质子驱动力为各种溶质(如阳、阴离子、氨基酸和糖类等)分子的主动跨膜转运提供了动力,使液泡成为植物细胞内离子平衡的调节器。液泡膜ATPase和线粒体膜ATPase都具有泵质子的功能,而且都受阴离子激活,其生化性质有许多相似  相似文献   

12.
钠氢交换体1(sodium/hydrogen exchanger 1,NHE1)是已知唯一一种在心肌细胞膜上显著表达的钠氢交换体(NHE)亚型,由N端的介导离子转运的跨膜结构域和C端胞内调节结构域两部分构成,对于维持正常心肌细胞内的pH值具有重要的作用,并且在代偿心肌缺血再灌注造成的细胞内pH值的变化中发挥主要作用。本文主要论述NHE1的结构以及其在心肌缺血再灌注中的研究进展。  相似文献   

13.
川芎嗪增加大鼠远端结肠阴离子分泌的基侧膜机制   总被引:3,自引:1,他引:2  
Xing Y  He Q  Zhu JX  Chan HC 《生理学报》2003,55(6):653-657
本研究用短路电流技术来观察在川芎嗪作用下,电解质在大鼠远端结肠上皮细胞的转运及其细胞机制。在新鲜分离的结肠上皮的基侧膜加入川芎嗪,能产生较大的短路电流。用粘膜下神经元阻断剂——河豚毒素预作用于结肠上皮,不影响随后的川芎嗪所产生的短路电流,前列腺素合成抑制剂indomethacin预作用可使随后的川芎嗪产生的短路电流减少55.2%。在结肠上皮的顶膜加入Cl^-通道阻断剂DPC和glibenclamide,能完全阻断川芎嗪产生的短路电流。Bumetanide,基侧膜钠、钾、氯共转运体阻断剂能抑制川芎嗪引起的短路电流的85.2%,而结肠上皮细胞基侧膜的非选择性钾通道阻断剂Ba^2 能阻断90%以上的短路电流,说明基侧膜的钠、钾、氯共转运体和钾通道在川芎嗪引起的短路电流中起着重要的作用。上述结果表明,川芎嗪刺激大鼠远端结肠上皮细胞分泌Cl^-是通过上皮细胞顶膜Cl^-通道和基侧膜的钠、钾、氯共转体和K^ 通道介导的。  相似文献   

14.
Bleich M  Shan QX 《生理学报》2007,59(4):443-453
K^+通道在上皮细胞内以极化的方式表达,形成一个庞大的膜蛋白家族。出于对主要依赖Na^+-K^+-ATPase而维持的细胞内跨膜K^+梯度的考虑,K^+通道在跨上皮细胞转运中的主要作用为:膜电位生成和K^+循环。本文以肾近端小管和胃壁上皮细胞转运为例简要阐述了K^+通道的作用。在这两个组织中,K^+通道活性限速跨上皮细胞转运,调节细胞体积。近年来,药理学工具和转基因动物的实验证实了对K^+通道的原先认知,并将研究深入到分子水平。K^+通道的分子结构挑战高亲和力药物分子的设计,及其多组织同时表达的两个典型特征阻碍了高活性、组织特异性小分子治疗的进展。然而,抑制K^+通道能阻断胃酸分泌等病理生理机制的深入研究,促进K^+通道药物用于胃病治疗和作为肾脏转运抑制剂用于肾脏相关疾病治疗。  相似文献   

15.
紧密连接(tight junction,TJ)广泛存在于所有上皮或内皮细胞间连接的最顶端,是物质经旁细胞途径转运的结构和功能基础。TJ是由跨膜蛋白和胞浆蛋白两大类构成的大分子复合物,主要行使"屏障"和"栅栏"功能,前者可对物质的大小和电荷进行选择,进而调控旁细胞途径的物质转运;后者则通过调控顶膜和基底侧膜两个功能区之间的脂质和蛋白等物质的自由弥散形成高度极性化的细胞。近年来,关于TJ在各种上皮细胞中的作用及调控机制的研究日益增多。本文重点综述了上皮细胞间TJ研究的最新进展,包括TJ的构成、结构和功能检测以及调控机制,并以几类研究比较集中的上皮类型为例介绍TJ研究的现状,这将为防治与TJ改变相关的上皮屏障功能障碍性疾病提供新的思路。  相似文献   

16.
水通道蛋白   总被引:5,自引:0,他引:5  
水通道蛋白 (aquaporin,AQP)是对水专一的通道蛋白 ,普遍存在于动、植物及微生物中。它所介导的自由水快速被动的跨生物膜转运 ,是水进出细胞的主要途径。1 水通道蛋白的发现长期以来 ,普遍认为细胞内外的水分子是以简单的跨膜扩散方式来透过脂双层膜。后来由于在生物物理学研究中发现红细胞及近端肾小管对渗透压改变引起的水的通透性很高 ,很难单纯以弥散来解释。因此 ,一些学者推测水的跨膜转运除了简单扩散外 ,还存在某种特殊的机制 ,并提出了水通道的概念。1988年 ,Agre等在鉴定人类 Rh血型抗原时 ,偶然在红细胞膜上发现了 1种新的 2…  相似文献   

17.
蔗糖转运蛋白(sucrose transporter,SUT)负责蔗糖的跨膜运输,在韧皮部介导的源-库蔗糖运输和为库组织供应蔗糖的生理活动中起关键作用。本文介绍植物体内蔗糖转运蛋白基因家族、细胞定位与功能调节以及高等植物的蔗糖感受机制的研究进展。  相似文献   

18.
成纤维细胞生长因子23(FGF23)是一种骨源性激素,它作用于其主要靶器官-肾脏,参与调节磷、钙和钠的重吸收以及活性维生素D(1,25(OH)2D)的合成。在近端肾小管,FGF23通过激活胞外信号调节激酶-1/2(ERK1/2)和血清/糖皮质激素调节激酶-1(SGK1)级联信号传导,使Na+/H+交换调节辅因子(NHERF)-1磷酸化,随后导致钠磷协同转运蛋白(Na Pi)-2a内在化和降解,从而抑制磷重吸收;FGF23通过下调1α-羟化酶表达,同时上调24-羟化酶表达,从而抑制1,25(OH)2D合成。在远端肾小管,FGF23通过激活赖氨酸缺陷型蛋白激酶-4(WNK4),上调上皮钙离子通道TRPV5(瞬时性受体阳离子电位通道亚家族V成员5)和Na+:Cl-协同转运蛋白(NCC)的顶膜表达,从而促进钙和钠的重吸收。临床中发现,由于遗传性和获得性原因导致的血FGF23浓度异常与慢性肾脏病(CKD)及其并发症密切相关。  相似文献   

19.
极性化上皮细胞的质膜因其所含蛋白质、脂质等组分不同,可以分为细胞膜顶端和细胞膜基底侧端两个区域,而新合成的蛋白质向这两个区域的有效分拣是上皮细胞维持其自身极性及正常功能所必需的。细胞膜基底侧端蛋白质的分拣主要由位于该蛋白质胞质区的信号肽所介导,关于这方面的研究是比较深入的;而细胞膜顶端蛋白质的分拣机制目前尚未阐明,因而显得比较复杂。近年来,糖类分子作为生物体内细胞识别和调控过程的信息分子日益受到关注,人们通过干扰聚糖合成、基因突变以及构建糖基化缺陷细胞株等实验方法,逐渐地认识到糖类分子在极性化上皮细胞的蛋白质分拣调节中起重要作用。由于糖分子本身结构非常复杂,而且目前缺乏研究糖类分子的有效手段,使得糖生物学的研究远远落后于蛋白质和核酸的研究。从而导致探讨糖类分子在蛋白质分拣过程的具体机制相对来说比较困难。本综述拟简要概括糖类分子中N-聚糖和O-聚糖在极性化上皮细胞的蛋白质分拣过程中的作用,以及两种聚糖在此过程中行使分拣信号功能的可能机制。  相似文献   

20.
ABC转运蛋白家族是一类通过结合并水解ATP释放能量实现底物的跨膜运输的转运蛋白,它们参与了植物众多的生理代谢过程,根据保守区的进化关系将ABC转运蛋白家族分成8个亚族,其中ABCB转运蛋白为第二大亚族。ABCB 转运蛋白具保守的NBDs结构域,由6个跨膜α-螺旋的疏水跨膜结构域组成了TMDs结构域,形成溶质跨膜的通道,但是其结构、长度与序列则变化多样。按分子大小不同将植物ABCB转运蛋白分为全分子转运蛋白、半分子转运蛋白两类,通过测序发现在拟南芥、水稻和番茄等植物上均有一定比列的ABCB转运蛋白,且行使多种功能。有研究表明,ABCB转运蛋白基因介导镉、铅和铝等重金属离子的转运,提高植物重金属耐性;它直接参与植物体内生长素的运输,从而调控植物高度;它还可能将苹果酸从质体转运到保卫细胞中调节气孔的开合。近年来,越来越多的ABCB转运蛋白被鉴定,但是ABCB亚家族庞大,底物特异性强,转运机制复杂,多数转运蛋白的功能尚未确定。因此,了解ABCB转运蛋白在生命活动过程中的重要性,以及基因表达调控的机制,解析ABCB转运蛋白在响应逆境胁迫过程中的重要作用,以期为植物抗逆性育种提供思路。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号