首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 800 毫秒
1.
The aim of this study was to determine the direct effect of a wide range of concentrations of lipopolysaccharide (LPS) of Escherichia coli O111:B4 on fasciculata-reticularis cells in primary cultures. In short-term cultures of fasciculata-reticularis cells, the presence of low (1-10 microg/ml) doses of LPS in the medium produced a decrease in ACTH-induced corticosterone secretion, in a dose-dependent manner and independent of the culture medium. The corticosterone production stimulated by db-cAMP was slightly decreased by the presence of LPS in culture medium, while the pregnenolone induced corticosterone biosynthesis was not modified. LPS modified the binding of [125I]-Tyr23-ACTH to the fasciculata-reticularis cell membrane and the signal transduction pathway, as LPS reduced ACTH-induced cAMP production. In long-term cultures, the presence of LPS in the medium produces a decrease in the specific binding of [125I]-Tyr23-ACTH, while the presence of ACTH in the culture medium produced an increase in its specific binding. The use of high doses of LPS (100-250 microg/ml) has helped to clarify some aspects of the LPS action. These doses of LPS severely inhibited ACTH-induced corticosterone production, and clearly reduced the corticosterone production stimulated by db-cAMP and the binding of ACTH to its receptors. In long-term cultures, LPS decreased the number of ACTH receptors, an effect that was reversed by subsequent exposure to ACTH. These results indicate that LPS exerts a direct action on fasciculata-reticularis cells and a model of the mechanism of LPS action is proposed.  相似文献   

2.
Eldstrom JR  La K  Mathers DA 《BioTechniques》2000,28(3):510, 512, 514, 516 passim
We have investigated the ability of LIPOFECTAMINE, a polycationic lipid reagent used in DNA transfection, to translocate E. coli lipopolysaccharide (LPS) into HeLa cells. Although HeLa cells did not spontaneously take up fluorescein isothiocyanate-labelled LPS (FITC-LPS) from the culture medium, the cells that were co-incubated with greater than 1 g/mL FITC-LPS and LIPOFECTAMINE showed punctate fluorescence. Virtually all cells were loaded on incubation with 100 micrograms/mL FITC-LPS. Confocal scanning laser microscopy showed extensive FITC-LPS loading in the cytoplasm of HeLa cells, but no label was evident in the nuclear regions of these cells. Loading with LPS for up to six hours had no effect on the viability of HeLa cells, beyond the 30% reduction in live cells that is attributable to the toxic effect of LIPOFECTAMINE itself. In contrast to cells treated with etoposide for six hours, LPS-loaded cells did not display apoptotic bodies. Exposure of cells to 4 beta-phorbol 12-myristate 13-acetate led to the induction of the immediate early gene c-fos and resulted in an enhanced c-Fos signal, detected by Western blot analysis. In contrast, LPS loading did not alter the c-fos expression in HeLa cells. The loading of LPS into HeLa cells by means of polycationic lipids results in relatively low acute toxicity, as judged from cell viability, morphology and c-fos expression. Therefore, our method appears well suited to the study of acute actions of LPS in the intracellular compartment of mammalian cells.  相似文献   

3.
BACKGROUND: CD14 is considered to be the major endotoxin (lipopolysaccharide [LPS]) binding molecule on human monocytes. It initiates cellular response, but its role in the clearance of LPS is not well understood. Under conditions that ensure totally CD14-dependent LPS binding on human monocytes, the internalization mechanisms of LPS and CD14 were studied. METHODS: The uptake and intracellular distribution of fluorescein isothiocyanate (FITC)-LPS and CD14 was determined by flow cytometry, trypan blue quenching, and confocal fluorescence microscopy. Incubation of surface-biotinylated cells with LPS at 37 degrees C or 4 degrees C and subsequent subfractionation was used to further characterize CD14 internalization. The amount of the intracellular CD14 was estimated by CD14 enzyme-linked immunosorbent assay (ELISA). RESULTS: The internalization rate of 10 ng/ml FITC-LPS with 1% human serum was 1% of bound endotoxin per minute, whereas CD14 expression did not decrease at the same time surface. We proved the presence of an intracellular CD14 pool (2.68 x 10(6) molecules per unstimulated monocyte) and could show that internalized FITC-LPS molecules can be found in different intracellular compartments than CD14. Subfractionation of LPS-treated biotinylated monocytes showed no change in biotinylated CD14 in the membrane fraction independently of the incubation temperature (37 degrees C or at 4 degrees C) used, indicating that these CD14 molecules were not taken up by an active process. CONCLUSIONS: These data indicate the presence of a large intracellular CD14 pool in monocytes with a yet unknown function, and suggest that LPS and CD14 molecules can be internalized independently after association on the cell surface.  相似文献   

4.
An assumption that the aldosterone-synthesizing enzyme exists only in zona glomerulosa cells apparently contradicts our recent findings that a purified bovine adrenocortical cytochrome P-45011 beta catalyzes the aldosterone formation and the enzyme exists in both zones of the adrenal cortex. To gain more insight into the zone specificity of aldosterone production, the aldosterone-synthesizing activity of mitochondria prepared from the isolated zones of adrenal cortex of various animal species was investigated. The intact mitochondria from the bovine or porcine zonae fasciculata-reticularis could not produce aldosterone whereas those from the zona glomerulosa produced it at a significant rate. When the mitochondria from the zonae fasciculata-reticularis were solubilized by the addition of cholate, they produced aldosterone from corticosterone at a rate comparable to that of those from the zona glomerulosa. The presence of specific factor(s) in the zonae fasciculata-reticularis mitochondria inhibiting expression of the aldosterone synthetic activity is discussed. The mitochondria of the rat zonae fasciculata-reticularis could hardly catalyze aldosterone synthesis under the detergent-solubilized conditions, whereas those of the zona glomerulosa could. Immunoblot analysis revealed that the mitochondria of the zonae fasciculata-reticularis contained a protein of Mr 51,000 which was immunocrossreactive with a monoclonal antibody directed against P-45011 beta, whereas those of the zona glomerulosa contained two immunocrossreactive proteins of Mr 51,000 and 49,000. These results suggest that in the case of rat adrenal cortex, a specific aldosterone-synthesizing enzyme exists in the zona glomerulosa.  相似文献   

5.
Role of Apolipoprotein A-Ⅰ in Protecting against Endotoxin Toxicity   总被引:6,自引:0,他引:6  
High density lipoprotein (HDL) binds lipopolysaccharide (LPS or endotoxin) and neutralizes its toxicity. We investigated the function of Apolipoprotein A-I (ApoA-I), a major apolipoprotein in HDL, in this process. Mouse macrophages were incubated with LPS, LPS+ApoA-I, LPS+ApoA-I+LFF (lipoprotein-free plasma fraction d>1.210 g/ml), LPS+HDL, LPS+HDL+LFF, respectively. MTT method was used to detect the mortality of L-929 cells which were attacked by the release-out cytokines in LPS-activated macrophages. It was found that ApoA-I significantly decreased L-929 cells mortality caused by LPS treatment (LPS vs. LPS+ApoA-I, P<0.05) and this effect became even more significant when LFF was utilized (LPS vs. LPS+ApoA-I+LFF, P<0.01; LPS vs. LPS+HDL+LFF, P<0.01). There was no significant difference between LPS+ApoA-I+LFF and LPS+HDL+LFF treatment, indicating that ApoA-I was the main factor. We also investigated in vivo effects of ApoA-I on mouse mortality rate and survival time after LPS administration. We found that the mortality in LPS+ApoA-I group (20%) and in LPS+ApoA-I+LFF group (10%) was significantly lower than that in LPS group (80%) (P<0.05, P<0.01, respectively); the survival time was (43.20 +/- 10.13) h in LPS+ApoA-I group and (46.80 +/- 3.79) h in LPS+ApoA-I+LFF group, which were significantly longer than that in LPS group (16.25 +/- 17.28) h (P<0.01). We also carried out in vitro binding study to investigate the binding capacity of ApoA-I and ApoA-I+LFF to fluorescence labeled LPS (FITC-LPS). It was shown that both ApoA-I and ApoA-I+LFF could bind with FITC-LPS, however, the binding capacity of ApoA-I+LFF to FITC-LPS (64.47 +/- 8.06) was significantly higher than that of ApoA-I alone (24.35 +/- 3.70) (P<0.01). The results suggest that: (1) ApoA-I has the ability to bind with and protect against LPS; (2) LFF enhances the effect of ApoA-I; (3) ApoA-I is the major contributor for HDL anti-endotoxin function.  相似文献   

6.
Lipopolysaccharide (LPS, or endotoxin), is a major constituent of the outer membrane of Gram-negative bacteria. Bacteria express either smooth LPS, which is composed of O-antigen (O-Ag), complete core oligosaccharides, and the lipid A, or rough LPS which lack O-Ag but possess lipid A and progressively shorter core oligosaccharides. CD14 has been described as the receptor for complexes of LPS with LPS-binding protein (LBP). Using flow cytometry we have compared the binding of Salmonella minnesota rough LPS (ReLPS) and Escherichia coli smooth LPS labelled with fluorescein isothiocyanate (FITC-LPS) to Chinese hamster ovary (CHO) cells transfected with human CD14 gene (hCD14-CHO), to MonoMac 6 cells and to endothelial cells. Our results showed that both forms of LPS display the same binding characteristics, and that the binding of FITC-LPS to cells was both CD14- and LBP-dependent for LPS concentrations up to 100 ng.mL-1. At LPS concentrations higher than 100 ng.mL-1 we observed CD14/LBP-independent binding. CD14/LBP-dependent binding was dose dependent, saturable, and enhanced in the presence of human pooled serum (HPS), and the monoclonal anti-CD14 antibody (MY4) or unlabelled LPS could outcompete it.  相似文献   

7.
The febrile responses of splenectomized (Splex) or sham-operated (Sham) guinea pigs challenged intravenously or intraperitoneally with lipopolysaccharide (LPS) 7 and 30 days after surgery were evaluated. FITC-LPS uptake by Kupffer cells (KC) was additionally assessed 15, 30, and 60 min after injection. LPS at 0.05 microg/kg iv did not evoke fever in Sham animals but caused a 1.2 degrees C core temperature (T(c)) rise in the Splex animals. LPS at 2 microg/kg iv induced a 1.8 degrees C greater T(c) rise of the Splex animals than of their controls. LPS at 2 and 8 microg/kg ip 7 days postsurgery induced 1.4 and 1.8 degrees C higher fevers, respectively, in the Splex than Sham animals. LPS at 2 and 8 microg/kg ip 30 days postsurgery also increased the febrile responses of the asplenic animals by 1.6 and 1.8 degrees C, respectively. FITC-LPS at 7 days was detected in the controls within KC 15 min after its administration; the label density was reduced at 30 min and almost 0 at 60 min. In the Splex group, in contrast, the labeling was significantly denser and remained unchanged through all three time points; this effect was still present 30 days after surgery. Similar results were obtained at 60 min after FITC-LPS intraperitoneal injection. Gadolinium chloride pretreatment (-3 days) of the Splex group significantly reduced both their febrile responses to LPS (8 microg/kg ip) and their KC uptake of FITC-LPS 7 days postsurgery. Thus splenectomy increases the magnitude of the febrile response of guinea pigs and the uptake of systemically administered LPS.  相似文献   

8.
During endotoxic shock there is a dysfunction of the adrenal gland; both corticosterone and aldosterone secretion are altered. The aim of the present study is to use glomerulosa cells in primary culture as a target of lipopolysaccharide (LPS) action. Glomerulosa cells cultured in basal conditions are able to proliferate; bFGF and ACTH have antagonic effects, bFGF increases proliferation whereas ACTH is antimitogenic. LPS has a biphasic effect, in the short term it is antimitogenic and in the long term increases the proliferation rate. LPS inhibits ACTH-induced corticosterone secretion in a dose-dependent manner in glomerulosa cells in culture similar to that in fasciculata cells, but it does not exert an important direct effect on aldosterone secretion. These results show that LPS exerts different effects in ACTH and ANG II signal transduction pathways and in the two enzymes which catalyze the late step in the steroidogenesis, 11beta-hydroxylase and aldosterone synthase, which could be in agreement with the existence of both enzymes, regulated independently, in rat zona glomerulosa cells.  相似文献   

9.
Lipopolysaccharide labeled with fluorescein isothiocyanate (FITC-LPS) was used to examine interactions between endotoxin and plasma membrane in isolated rat hepatocytes and mouse neuroblastoma NB41A3 cells. At the same endotoxin to cell ratio, hepatocytes bound more toxin than did neuroblastoma cells. At a dose of 12 micrograms/mg dry wt, a bound mobile fraction of between 60 and 75% of FITC-LPS was found on hepatocytes at 25 degrees C with a lateral diffusion coefficient (D) of 4.0 X 10(-9) cm2/s. In neuroblastoma cells, the mobile fraction was larger (85-90%), with D 1.0 X 10(-8) cm2/s. D was temperature-dependent between 10 and 37 degrees C and increased from 1.8 X 10(-9) to 1.0 X 10(-8) cm2/s in hepatocytes and from 9.4 X 10(-9) to 1.9 X 10(-8) cm2/s in neuroblastoma cells. In both types of cell, nonviable (cells which did not exclude Trypan blue) as compared to viable cells showed different recovery patterns and 100% of the probe molecules were mobile. These results suggest that: (1) endotoxin binding to mammalian cells consists of two subpopulations with different mobilities; (2) binding of the immobile fraction is dependent on cellular integrity; and (3) the differences in binding, lateral mobility, and size of the immobile fraction in hepatocytes and neuroblastoma cells may be due to variations in membrane composition and/or number of binding sites.  相似文献   

10.
BACKGROUND: The triggering of cellular responses during endotoxic shock is initiated for the binding of endotoxin (lipopolysaccharide; LPS) to the cell surface. Kupffer and endothelial liver cells, involved in the removal of endotoxin from blood circulation, show in vitro a rapid response to LPS in the absence of serum. METHODS: A double-labeling fluorescent assay was designed to evaluate the binding properties of Escherichia coli O111:B4 LPS to individual endothelial and Kupffer cells in suspension, where both populations occurred in the same relative proportion as in liver. After immunolabeling of the Kupffer cell population with the monoclonal antibody ED1 conjugated to R. phycoerythrin, the binding characteristics of LPS labeled with fluorescein to both endothelial and Kupffer cells were simultaneously studied by flow cytometry in serum-free conditions. RESULTS: Specific and saturable binding of endotoxin was observed with both populations, showing properties of a receptor-mediated process. The Kupffer cell population showed a faster capacity and a higher affinity for LPS binding. The Hill coefficients indicated positive cooperativity in the LPS interaction with both populations. CONCLUSIONS: Specific endotoxin binding to liver sinusoidal cells occurs in a serum-independent manner, particularly at high LPS concentrations. Flow cytometry is a fast, precise, and efficient technique to evaluate the simultaneous interaction of a ligand with two different cell types.  相似文献   

11.
Interaction of the pore-forming protein (porin) from Yersinia pseudotuberculosis with S- and R-forms of the endogenous lipopolysaccharide (LPS) was studied at various ionic strengths (20-600 mM NaCl), concentrations of divalent cations (5-100 mM CaCl2, MgCl2), and pH values from 3.0 to 9.0. The interaction of the R-LPS with porin has been shown in all experimental conditions to be in consensus with the model suggesting binding at independent sites of two types. S-LPS binds to interacting sites of relatively high affinity and to independent sites of low affinity at all pH values examined and at low NaCl concentration. The cooperative interaction of the S-LPS and porin is not observed at high ionic strength and in divalent cation-free medium. The number of binding sites of porin and association constants (Ka) for both LPS forms decrease significantly on increasing the solution ionic strength. The Ka values for the R- and S-LPS change oppositely on changing the pH: the Ka value for the R-LPS is maximal (Ka = 6.7 x 10(5) M-1), but that for S-LPS is minimal (Ka = 0.4 x 10(5) M(-1) at pH 5.0-5.5. The number of high-affinity and low-affinity binding sites for both LPS forms is maximal at pH 5.0-5.5. In this case, the numbers of high- and low-affinity sites for R-LPS are 3 and 10, respectively, and those for the S-LPS are 7 and 20, respectively. These data suggest an important role of electrostatic interactions on binding of LPS to porin. The contribution of conformational changes of the ligand and protein and hydrophobic interactions are discussed.  相似文献   

12.
Human peripheral blood monocytes were stimulated with lipopolysaccharide (LPS) and interferon-gamma (IFN-gamma) alone or in combination. Stimulated but not resting monocytes displayed the Tac peptide of the interleukin 2 (IL 2) receptor within 24 hr as measured by immunofluorescence staining and [3H] Tac binding. The total number of anti-Tac binding sites on co-stimulated monocytes was 13,700. By using scatchard analysis with radiolabeled IL 2, the activated cells were shown to express low numbers (below 100 sites/cell) of high affinity binding sites with a KD of approximately 15 pM. LPS and IFN-gamma were additive in augmenting the number of IL 2 and anti-Tac binding sites. By using an ELISA assay specific for the soluble released form of the Tac peptide we identified 112 U/ml of IL 2 receptors in the supernatant of monocytes stimulated for 24 hr with IFN-gamma, 233 U/ml after stimulation with LPS, and 519 U/ml after the addition of both stimulating agents. Both the membrane form (55,000 daltons), as well as the soluble form (45,000 to 50,000 daltons) of the Tac, IL 2 receptor, peptide from monocytes were shown by immunoprecipitation and gel electrophoresis to be similar size to the comparable forms of these receptors derived from activated T cells. In addition, monocytes stimulated for 8 hr contained mRNA specifically hybridizing to a cDNA probe coding for the Tac peptide. Finally, activated monocytes responded to the addition of recombinant IL 2 by an increase in H2O2 production that was measured by using fluorescent indicator 2,7-dichlorofluorescein. This response as well as the observed induction of monocytic IL 2 receptors by LPS may point to a functional role for this receptor during monocyte/macrophage responses to microbial infections.  相似文献   

13.
The effect of bacterial lipopolysaccharide (LPS) on macrophage receptors for tumor necrosis factor/cachectin (TNF-R) was studied. At equilibrium, iodinated recombinant human TNF alpha (rTNF alpha) bound to 1100 +/- 200 sites/cell on macrophage-like RAW 264.7 cells with a Kd of 1.3 +/- 0.1 x 10(-9) M. Preexposure of RAW 264.7 cells to 10 ng/ml LPS for 1 h at 37 degrees C resulted in complete loss of cell surface TNF alpha binding sites. 50% loss ensued after 1 h with 0.6 ng/ml LPS, or after 15 min with 10 ng/ml LPS. Complete loss of TNF alpha binding sites occurred without change in numbers of complement receptor type 3. No decrease in TNF-R followed preexposure to LPS at 4 degrees C, nor could LPS displace 125I-rTNF alpha from its binding sites. Although TNF-R disappeared from the surface of intact macrophages following exposure to LPS, specific TNF alpha binding sites were unchanged in permeabilized macrophages, indicating that TNF-R were rapidly internalized. Conditioned media from LPS-treated RAW 264.7 cells induced 30% down-regulation of TNF-R on macrophages from LPS-hyporesponsive mice (C3H/HeJ), suggesting that a soluble macrophage product may be responsible for a minor portion of the LPS effect. Additional evidence against endogenous TNF alpha being the major cause of TNF-R internalization was the rapid onset of the effect of LPS on TNF-R compared to the reported onset of TNF alpha production, the relatively high concentrations of exogenous rTNF alpha required to mimic the effect of LPS, and the inability of TNF alpha-neutralizing antibody to block the effect of LPS. LPS-induced down-regulation of TNF-R was complete or nearly complete not only in RAW 264.7 cells, but also in primary macrophages of both human and murine origin, was less marked in human endothelial cells, and was absent in human granulocytes and melanoma cells and mouse L929 cells. Thus, in situ, macrophages and some other host cells may be resistant to the actions of TNF alpha produced during endotoxinemia, because such cells may internalize their TNF-R in response to LPS before TNF alpha is produced.  相似文献   

14.
15.
We have examined protein kinase C activity and hormone secretion in aldosteronoma cells derived from adrenocortical glomerulosa cells and in adjacent adrenal cells containing adrenocortical fasciculata-reticularis cells. When aldosteronoma cells were stimulated with ACTH or angiotensin II, protein kinase C activity gradually decreased in cytosol whereas it increased in membrane. Coincident with the changes of protein kinase C activity, there was enhancement of secretion of aldosterone. On the other hand, incubation of adjacent adrenal fasciculata-reticularis cells with ACTH induced cortisol secretion and an increase in cytosolic protein kinase C activity, accompanied by a decrease in the enzyme activity in membrane. Upon stimulation with angiotensin II, adjacent adrenal fasciculata-reticularis cells did not secrete cortisol and no significant changes of protein kinase C activities were observed in either cytosolic or membrane fractions. These results indicate that both ACTH and angiotensin II stimulate aldosterone secretion and cause translocation of protein kinase C from cytosol to membranes in aldosteronoma cells, whereas, in fasciculata-reticularis cells, only ACTH stimulates cortisol secretion and this is associated with translocation of protein kinase C in the opposite direction, viz., from membrane to cytosol.  相似文献   

16.
Endotoxin (lipopolysaccharide, LPS) is a component of the outer membrane of Gram-negative bacteria and promotes the activation of macrophages and microglia. Although these cells are highly LPS-responsive, they serve unique tissue-specific functions and exhibit different LPS sensitivities. Accordingly, it was of interest to evaluate whether these biological differences reside in variations within LPS signaling pathways between these two cell types. Because the mitogen-activated protein kinases ERK-1 and ERK-2 have been implicated in the control of many immune responses, we tested the concept that they are a key indicator for differences in cellular LPS sensitivity. We observed that murine RAW 264.7 macrophages and murine BV-2 microglial cells both respond to LPS by exhibiting increased IkappaBalpha degradation, enhanced NF-kappaB DNA binding activity, and elevated nitric oxide and interleukin-1beta production. Although LPS potently stimulates ERK activation in RAW 264.7 macrophages, it does not activate ERK-1/-2 in BV-2 microglia. Moreover, antagonism of the MEK/ERK pathway potentiates LPS-stimulated nitric oxide production, suggesting that LPS-stimulated ERK activation can exert inhibitory effects in macrophage-like cells. These data support the idea that ERK activation is not a required function of LPS-mediated signaling events and illustrate that alternative/additional pathways for LPS action exist in these cell types.  相似文献   

17.
Class II (Ia) major histocompatibility complex molecules are cell surface proteins normally expressed by a limited subset of cells of the immune system. These molecules regulate the activation of T cells and are required for the presentation of antigens and the initiation of immune responses. The expression of Ia in B cells is determined by both the developmental stage of the B cell and by certain external stimuli. It has been demonstrated previously that treatment of B cells with lipopolysaccharide (LPS) results in increased surface expression of Ia protein. However, we have confirmed that LPS treatment results in a significant decrease in mRNA encoding the Ia proteins which persists for at least 18 h. Within the upstream regulatory region of A alpha k, an NF-kappa B-like binding site is present. We have identified an LPS-induced DNA-binding protein in extracts from athymic mice whose spleens consist predominantly of B cells. Binding activity is present in low levels in unstimulated spleen cells and is increased by LPS treatment. This protein binds to two sites in a regulatory region of the Ia A alpha k gene, one of which contains the NF-kappa B-like binding site. DNA fragments containing these sites cross-compete for protein binding. Analysis by DNase I footprinting identified a target binding sequence, named the LPS-responsive element. Although this target sequence contains an NF-kappa B-like binding site, competition with a mutant oligonucleotide demonstrated that bases critical for NF-kappa B binding are not required for binding of the LPS-inducible protein. Therefore, we hypothesized that this inducible protein represents a new mediator of LPS action, distinct from NF-kappa B, and may be one mechanism to account for the decrease in mRNA encoding the Ia proteins.  相似文献   

18.
A mutant lipopolysaccharide (LPS) lacking a myristate chain in lipid A was shown to be non-pathogenic both in humans and mice. The mutant penta-acylated LPS from the lpxM-strain did not induce TNF-alpha production in murine peritoneal macrophages, or activation of NF-kappaB in transfected cells expressing murine TLR4/MD-2. We prepared a recombinant murine MD-2 in Escherichia coli (E. coli), and examined the binding function. Unexpectedly, specific binding was detected to both wild type and mutant LPS. However, the mutant LPS did not induce conformation changes or oligomerization of TLR4, which have been shown to be required for signal transduction. Mutant LPS appears to fail to induce appropriate conformational changes, resulting in oligomerization of the murine complex for triggering cell responses.  相似文献   

19.
Abstract Pentaacyl diphosphoryllipid A derived from the nontoxic lipopolysaccharide (LPS) of Rhodobacter sphaeroides ATCC 17023 (RsDPLA) did not induce tumour necrosis factor-α nor interleukin-6 release in the murine macrophage-like cell line J774.1. However, it effectively inhibited the induction of these two cytokines by LPS of Salmonella minnesota Re mutant R595 (ReLPA) in a concentration-dependent manner. Maximal inhibition and half-maximal inhibition occured when the ReLPS to RsDPLA mass ratio was 1:30 and 1:1, respectively. A binding study was performed in the presence of serum to determine whether RsDPLA is competing with ReLPS for LPS binding sites on J774.1 cells. This assay allows the determination of LPS binding to J774.1 cells via a mechanism involving CD14, a receptor for complexes of LPS with LPS binding protein (LBP), and its possible inhibition. The results show that RsDPLA strongly inhibits the binding of 125I-labelled ReLPS to J774.1 cells. Maximal and one-half maximal inhibition of binding occured when the ReLPS to RsDPLA mass ratios were 1:2.5 and 1:0.5, respectively. It was found that the inhibition of binding by RsDPLA was much stronger than that by unlabelled ReLPS. These results suggest that RsDPLA is competing with ReLPS for CD14-dependent recognition of LPS on J774.1 cells.  相似文献   

20.
Guar gum (G) is a simple characterized branched polysaccharide, which is frequently used in food industries. We prepared the gum C-glycosylated derivative (GG), and its sulphated derivative (SGG), aiming to characterize their cancer chemopreventive, and anti-inflammatory properties. Estimation of cancer chemopreventive activity, specifically anti-initiation, including the modulation of carcinogen metabolism and the antioxidant capacity, revealed that GG was a potent anti-initiator, where it inhibited not only the carcinogen activator enzyme, cytochrome P450 1A (CYP1A), but also induced the carcinogen detoxification enzymes glutathione-S-transferases (GSTs), while SGG inhibited both CYP1A and GSTs. SGG was an effective radical scavenger than GG against hydroxyl, peroxyl, and superoxide anion radicals. GG and SGG were found to modulate the macrophage functions into an anti-inflammatory pattern. Thus, both enhanced the macrophage proliferation and phagocytosis of fluorescein isothiocyanate (FITC)-zymosan; however, they also inhibited strongly the nitric oxide generation and tumor necrosis factor-alpha secretion in lipopolysaccharide (LPS)-stimulated RAW macrophage 264.7. Unexpectedly, both GG and SGG dramatically inhibited the binding affinity of FITC-LPS to RAW 264.7, as indicated by flow cytometry analysis. GG and SGG exhibited a significant anti-proliferative activity against human hepatocellular carcinoma cells (Hep G2), and only SGG was specifically cytotoxic for human breast carcinoma cells (MCF-7), but neither was significantly cytotoxic for human lymphoblastic leukemia cells (1301). SGG led to a major disturbance in cell cycle phases of Hep G2 cells as indicated by concomitant arrest in S- and G2/M-phases, a disturbance that was associated with an induced cell death as a result of necrosis, but not apoptosis in both GG- and SGG-treated cells. Taken together, the modified gums could be used as an alternative of G in health food industries to provide cancer prevention in risk populations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号