首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 921 毫秒
1.
Lipopolysaccharide (LPS, or endotoxin), is a major constituent of the outer membrane of Gram-negative bacteria. Bacteria express either smooth LPS, which is composed of O-antigen (O-Ag), complete core oligosaccharides, and the lipid A, or rough LPS which lack O-Ag but possess lipid A and progressively shorter core oligosaccharides. CD14 has been described as the receptor for complexes of LPS with LPS-binding protein (LBP). Using flow cytometry we have compared the binding of Salmonella minnesota rough LPS (ReLPS) and Escherichia coli smooth LPS labelled with fluorescein isothiocyanate (FITC-LPS) to Chinese hamster ovary (CHO) cells transfected with human CD14 gene (hCD14-CHO), to MonoMac 6 cells and to endothelial cells. Our results showed that both forms of LPS display the same binding characteristics, and that the binding of FITC-LPS to cells was both CD14- and LBP-dependent for LPS concentrations up to 100 ng.mL-1. At LPS concentrations higher than 100 ng.mL-1 we observed CD14/LBP-independent binding. CD14/LBP-dependent binding was dose dependent, saturable, and enhanced in the presence of human pooled serum (HPS), and the monoclonal anti-CD14 antibody (MY4) or unlabelled LPS could outcompete it.  相似文献   

2.
The GPI-anchored urokinase plasminogen activator receptor (uPAR) does not internalize free urokinase (uPA) but readily internalizes and degrades uPA:serpin complexes in a process that requires the alpha2-macroglobulin receptor/low density lipoprotein receptor-related protein (alpha2MR-LRP). This process is accompanied by the internalization of uPAR which renders it resistant to phosphatidylinositol-specific phospholipase C (PI-PLC). In this paper we show that during internalization of uPA:serpins at 37 degrees C, analysed by FACScan, immunofluorescence and immunoelectron microscopy, an initial decrease of cell surface uPAR was observed, followed by its reappearance at later times. This effect was not due to redistribution of previously intracellular receptors, nor to the surface expression of newly synthesized uPAR. Recycling was directly demonstrated in cell surface-biotinylated, uPA:PAI-1-exposed cells in which biotinylated uPAR was first internalized and subsequently recycled back to the surface upon incubation at 37 degrees C. In fact, uPAR was resistant to PI-PLC after the 4 degrees C binding of uPA:PAI-1 to biotinylated cells, but upon incubation at 37 degrees C PI-PLC-sensitive biotinylated uPAR reappeared at the cell surface. Binding of uPA:PAI-1 by uPAR, while essential to initiate the whole process, was, however, dispensable at later stages as both internalization and recycling of uPAR could be observed also after dissociation of the bound ligand from the cell surface.  相似文献   

3.
CD14, expressed on the surface of monocytes as a phospholipid-linked protein, is a receptor for serum LPS binding protein/LPS complex. It was specifically down-modulated after stimulation of monocytes by physiologic activating/differentiating agents such as bacterial LPS and IFN-gamma, by the pharmacologic agents PMA and calcium ionophore A23187, and by anti-CD14 antibodies. The down-modulation was almost totally blocked at 4 degrees C or at pH 4.5 and markedly inhibited by the protease inhibitors diisopropylfluorophosphate and PMSF. A soluble labeled CD14 was isolated from culture supernatant of surface iodinated monocytes after their activation, indicating that CD14 is shed from the cell surface rather than internalized. The size of the soluble CD14 shed from the monocytes in vitro was smaller than that of either the membrane-bound form or a soluble CD14 cleaved from the cell surface by phosphatidyl inositol-specific phospholipase C, but identical to the size of one of the two major soluble CD14 forms normally found in human serum. These data suggest that CD14 shedding induced by monocyte stimulation may play an important role in the regulation of surface CD14 expression.  相似文献   

4.
The binding of rough LPS (ReLPS from Salmonella minnesota R595) to human peripheral blood polymorphonuclear leukocytes (PMN), monocytes, and lymphocytes was examined by using fluorescein-labeled LPS and flow cytometry. At 4 degrees C, FITC-ReLPS bound rapidly in a concentration- and time-dependent way to PMN, monocytes, and lymphocytes. Because mononuclear cells showed both binding and nonbinding cell populations, FITC-ReLPS was used in conjunction with specific phycoerythrin-labeled mAb to identify these cell subpopulations. In contrast to T lymphocytes and NK cells, all monocytes and B lymphocytes efficiently bound FITC-ReLPS. PMN and monocytes showed two to three times more cell-associated FITC-ReLPS when cells were incubated at 37 degrees C compared with incubation at 4 degrees C. Binding of FITC-ReLPS to lymphocytes was similar for both 4 degrees C and 37 degrees C incubation conditions. In contrast to 4 degrees C, at 37 degrees C cell-associated LPS reflects surface-bound as well as internalized LPS, as demonstrated with fluorescence quenching of extracellular FITC-ReLPS by trypan blue. At 4 degrees C, binding of FITC-ReLPS was inhibited by polymyxin B. In addition, purified IgM mAb directed against hydrophobic acyl residues of ReLPS showed more than 95% inhibition of ReLPS binding to leukocytes, indicating the ability of specific mAb to prevent LPS-cell interactions necessary to exert biologic effects. The use of mAb, directed against different parts of the LPS molecule, provides an alternative method for LPS binding-inhibition studies.  相似文献   

5.
The interaction between radioiodinated lipopolysaccharide from Escherichia coli 0111:B4 (125I-LPS) and human peripheral-blood monocytes was studied. The association of 125I-LPS with monocytes at 37 degrees C appeared to depend on binding to the cell membrane with subsequent internalization of the molecule, and was not saturable with time (up to 2 h) or 125I-LPS concentration (up to 10 micrograms/ml). There was no apparent difference in the behaviour of unlabelled LPS and 125I-LPS with respect to monocyte association. 125I-LPS association with monocytes was inhibited by LPS and O-polysaccharide from E. coli 0111:B4 and Salmonella typhi 0901, but not by lipid A or polymyxin B. We propose that the mechanism of human monocyte stimulation by LPS involves polysaccharide-dependent binding to the cell membrane followed by internalization of the LPS molecule. We were unable to demonstrate a specific LPS receptor such as that found on murine B-lymphocytes.  相似文献   

6.
Mammalian myeloid and epithelial cells express several kinds of antibacterial peptides (alpha-/beta-defensins and cathelicidins) that contribute to the innate host defense by killing invading micro-organisms. In this study we evaluated the LPS-neutralizing activities of cathelicidin peptides human CAP18 (cationic antibacterial proteins of 18 kDa) and guinea pig CAP11 using the CD14(+) murine macrophage cell line RAW264.7 and the murine endotoxin shock model. Flow cytometric analysis revealed that CAP18 and CAP11 inhibited the binding of FITC-conjugated LPS to RAW264.7 cells. Likewise, Northern and Western blot analyses indicated that CAP18 and CAP11 suppressed LPS-induced TNF-alpha mRNA and protein expression by RAW264.7 cells. Interestingly, CAP18 and CAP11 possessed LPS-binding activities, and they strongly suppressed the interaction of LPS with LPS binding protein that mediates the transport of LPS to CD14 to facilitate the activation of CD14(+) cells by LPS. Moreover, when CAP18 and CAP11 were preincubated with RAW264.7 cells, they bound to the cell surface CD14 and inhibited the binding of FITC-LPS to the cells. Furthermore, in the murine endotoxin shock model, CAP18 or CAP11 administration inhibited the binding of LPS to CD14(+) cells (peritoneal macrophages) and suppressed LPS-induced TNF-alpha expression by these cells. Together these observations indicate that cathelicidin peptides CAP18 and CAP11 probably exert protective actions against endotoxin shock by blocking the binding of LPS to CD14(+) cells, thereby suppressing the production of cytokines by these cells via their potent binding activities for LPS and CD14.  相似文献   

7.
The effects of tumour-promoting phorbol esters on the receptor-mediated endocytosis of insulin were investigated in the human hepatoma cell line HepG2. Treatment of these cells with the biologically active phorbol 12-O-tetradecanoylphorbol 13-acetate (TPA), but not with the non-tumour-promoting analogue 4 alpha-phorbol 12,13-didecanoate, resulted in dramatic morphological changes, which were accompanied by a 1.5-2.5-fold increase in specific 125I-insulin association with the cells at 37 degrees C. This increase in insulin binding was not observed when the binding reaction was performed at 4 degrees C. The potentiation of 125I-insulin association with TPA-treated cells at 37 degrees C could be completely accounted for by an increase in the intracellular pool of internalized insulin; there was no concomitant increase in cell-surface insulin binding. Dissociation studies showed that the enhanced internalization of insulin by cells after treatment with TPA resulted from a decrease in the rate of intracellular processing of the insulin after receptor-mediated endocytosis. The phorbol-ester-induced enhancement of internalized insulin in HepG2 cells was additive with the potentiation of endocytosed insulin induced by both the lysosomotropic reagent chloroquine and the ionophore monensin; this indicates that TPA affects the intracellular processing of the insulin receptor at a point other than those disrupted by either of these two reagents. The potentiation of insulin receptor internalization by tumour-promoting phorbol esters could be completely mimicked by treatment with phospholipase C, but not with phospholipase A, and partially mimicked by treatment with the synthetic diacylglycerol 1-oleoyl-2-acetylglycerol. By these criteria, the effects of phorbol esters on the insulin receptor in HepG2 cells appear to be mediated through protein kinase C. These results support the concept that the activation of protein kinase C by treatment with phorbol esters causes a perturbation of the insulin-receptor-mediated endocytotic pathway in HepG2 cells, reflected in a long-term decreased rate of dissociation of internalized insulin by the phorbol-ester-treated cells.  相似文献   

8.
Diphosphoryl lipid A derived from the nontoxic LPS of Rhodobacter sphaeroides (RsDPLA) has been shown to be a powerful LPS antagonist in both human and murine cell lines. In addition, RsDPLA also can protect mice against the lethal effects of toxic LPS. In this study, we complexed both the deep rough LPS from Escherichia coli D31 m4 (ReLPS) and RsDPLA with 5- and 30-nm colloidal gold and compared their binding to the RAW 264.7 cell line by electron microscopy. Both ReLPS and RsDPLA bound to the cells with the following observations. First, binding studies revealed that pretreatment with RsDPLA completely blocked the binding and thus internalization of ReLPS-gold conjugates to these cells at both 37 degrees C and 4 degrees C. Second, ReLPS was internalized via micropinocytosis (noncoated plasma membrane invaginations) involving formation of caveolae-like structures and leading to the formation of micropinocytotic vesicles, macropinocytosis (or phagocytosis), formation of clathrin-coated pits (receptor mediated), and penetration through plasma membrane into cytoplasm. Third, in contrast, RsDPLA was internalized predominantly via macropinocytosis. These studies show for the first time that RsDPLA blocks the binding and thus internalization of LPS as observed by scanning and transmission electron microscopy.  相似文献   

9.
TLR4 is the signaling but not the lipopolysaccharide uptake receptor   总被引:5,自引:0,他引:5  
TLR4 is the primary recognition molecule for inflammatory responses initiated by bacterial LPS (endotoxin). Internalization of endotoxin by various cell types is an important step for its removal and detoxification. Because of its role as an LPS-signaling receptor, TLR4 has been suggested to be involved in cellular LPS uptake as well. LPS uptake was investigated in primary monocytes and endothelial cells derived from TLR4 and CD14 knockout C57BL/6 mice using tritiated and fluorescein-labeled LPS. Intracellular LPS distribution was investigated by deconvolution confocal microscopy. We could not observe any difference in LPS uptake and intracellular LPS distribution in either monocytes or endothelial cells between TLR4(-/-) and wild-type cells. As expected, CD14(-/-) monocytes showed a highly impaired LPS uptake, confirming CD14-dependent uptake in monocytes. Upon longer incubation periods, the CD14-deficient monocytes mimicked the LPS uptake pattern of endothelial cells. Endothelial cell LPS uptake is slower than monocyte uptake, LBP rather than CD14 dependent, and sensitive to polyanionic polymers, which have been shown to block scavenger receptor-dependent uptake mechanisms. We conclude that TLR4 is not involved in cellular LPS uptake mechanisms. In membrane CD14-positive cells, LPS is predominantly taken up via CD14-mediated pathways, whereas in the CD14-negative endothelial cells, there is a role for scavenger receptor-dependent pathways.  相似文献   

10.
Our previous study has reported that ethanol (ETOH) partially inhibited the endotoxin (LPS)-induced tissue factor (TF)-activation in monocytes including blood peripheral monocytes as well as cultured leukemic U937 and THP-1 cells. The present study shows a strong correlation (r=0·92; p<0·01) between TF-activation and depression in LPS binding blocked by ETOH in U937 cells. The antagonism by ETOH of LPS binding was not due to a direct extracellular blockade, since ETOH did not affect the affinity of fluorescein isothiocyanate (FITC)-LPS or -anti CD14 mAb on U937 cells. After U937 cells were treated with 2 per cent (v/v) ETOH for 3 h, LPS binding was however drastically inhibited as shown by immunostaining with FITC-LPS which was viewed on a confocal laser scanning microscope. The results imply that cellular events of the ETOH effect mediate this inhibition of LPS binding. Anti-CD14 mAb (UCHM-1) inhibited LPS binding in a dose-dependent fashion, revealing a competitive specific binding to the LPS receptor. The results suggest that CD14 plays an important role in the recognition of LPS. FITC-UCHM-1 binding was significantly reduced in the cells pretreated with 2 per cent (v/v) ETOH for 3 h, indicating that ETOH modulates the ability to express CD14. CD14 expression was upregulated by priming with LPS which was offset by ETOH. Acetaldehyde, a possible metabolite of ETOH, was tested with no effect on CD14 expression. Taken together, our results show that ETOH downregulates the recognition of LPS, and suggest that the inhibitory action is likely to be mediated by the depression in CD14 expression which was also accompanied by a significantly altered membrane fluidity. Thus, the antagonism by ETOH of the binding of LPS results in a depression in the LPS-induced TF-activation. © 1997 John Wiley & Sons, Ltd.  相似文献   

11.
We have used biologically active derivatives of beta-nerve growth factor (NGF), modified by biotinylation via carboxyl groups, to target the specific binding of liposomes to cultured rat and human tumor cells bearing NGF receptors. Liposomes, to be used for targeting, were prepared by conjugating streptavidin to phospholipid amino groups on liposomes prepared by reverse-phase evaporation. Approximately 2,000 streptavidin molecules were incorporated per liposome. Addition of biotinylated NGF, but not of unmodified NGF, could mediate the subsequent binding of radiolabeled streptavidin-liposomes to rat pheochromocytoma PC12 cells in suspension at 4 degrees C. In contrast, incubation with biotinylated NGF did not mediate the binding of hemoglobin-conjugated liposomes. Under optimal incubation conditions, approximately 570 streptavidin-liposomes were specifically bound per cell. Biotinylated NGF was also used to obtain specific binding of streptavidin-liposomes containing encapsulated fluorescein isothiocyanate-labeled dextran to PC12 cells or human melanoma HS294 cells. When HS294 cells were incubated at 37 degrees C following targeted liposome binding at 4 degrees C, the cell-associated fluorescence appeared to become internalized, displaying a perinuclear pattern of fluorescence similar to that observed when lysosomes were stained with acridine orange. Trypsin treatment abolished cell-associated fluorescence when cells were held at 4 degrees C but did not alter the fluorescence pattern in cells following incubation at 37 degrees C. When liposomes containing carboxyfluorescein, a dye capable of diffusing out of acidic compartments, were targeted to HS294 cells, subsequent incubation at 37 degrees C resulted in diffuse cytoplasmic fluorescence, suggesting that internalized liposomes encounter lysosomal or prelysosomal organelles.  相似文献   

12.
Internalization of the fibronectin receptor is a constitutive process   总被引:9,自引:0,他引:9  
Using a monoclonal antibody specific for the hamster fibronectin receptor (FnR), we have demonstrated that a portion of the CHO cell FnR population is constitutively endocytosed. Three independent techniques were used to study the internalization: 1) after saturation binding of an anti-FnR antibody (PB1) to cells at 4 degrees C, internalization was initiated by warming to 37 degrees C, and then acid/salt elution of membrane-bound ligand was used to quantitate the internalized 125I-PB1; 2) cell vesicular traffic was pharmacologically disrupted with monensin or chloroquine, and the subsequent reduction of the cell surface pool of FnR was monitored; and 3) selective immunoprecipitation was used to separate surface and internalized 125I-labeled FnR. These experiments indicate that about 30% of the cell surface FnR is endocytosed with a t1/2 of 7 min and that this internalization occurs regardless of the ligation state of the receptor. Other observations indicate that the larger fraction of the cell surface FnR pool (70-75%) is apparently shed from the cell upon ligation with antibody at 37 degrees C. This process occurs much more slowly than receptor internalization and leads to an overall reduction in the amount of cell surface FnR. Our results suggest physically or chemically distinct populations of FnR, one of which is unavailable for internalization and recycling.  相似文献   

13.
《The Journal of cell biology》1995,131(6):1609-1622
The GPI-anchored urokinase plasminogen activator receptor (uPAR) does not internalize free urokinase (uPA). On the contrary, uPAR-bound complexes of uPA with its serpin inhibitors PAI-1 (plasminogen activator inhibitor type-1) or PN-1 (protease nexin-1) are readily internalized in several cell types. Here we address the question whether uPAR is internalized as well upon binding of uPA-serpin complexes. Both LB6 clone 19 cells, a mouse cell line transfected with the human uPAR cDNA, and the human U937 monocytic cell line, express in addition to uPAR also the endocytic alpha 2-macroglobulin receptor/low density lipoprotein receptor-related protein (LRP/alpha 2-MR) which is required to internalize uPAR-bound uPA-PAI-1 and uPA-PN-1 complexes. Downregulation of cell surface uPAR molecules in U937 cells was detected by cytofluorimetric analysis after uPA-PAI-1 and uPA-PN-1 incubation for 30 min at 37 degrees C; this effect was blocked by preincubation with the ligand of LRP/alpha 2-MR, RAP (LRP/alpha 2-MR- associated protein), known to block the binding of the uPA complexes to LRP/alpha 2-. MR. Downregulation correlated in time with the intracellular appearance of uPAR as assessed by confocal microscopy and immuno-electron microscopy. After 30 min incubation with uPA-PAI-1 or uPA-PN-1 (but not with free uPA), confocal microscopy showed that uPAR staining in permeabilized LB6 clone 19 cells moved from a mostly surface associated to a largely perinuclear position. This effect was inhibited by the LRP/alpha 2-MR RAP. Perinuclear uPAR did not represent newly synthesized nor a preexisting intracellular pool of uPAR, since this fluorescence pattern was not modified by treatment with the protein synthesis inhibitor cycloheximide, and since in LB6 clone 19 cells all of uPAR was expressed on the cell surface. Immuno-electron microscopy confirmed the plasma membrane to intracellular translocation of uPAR, and its dependence on LRP/alpha 2-MR in LB6 clone 19 cells only after binding to the uPA-PAI-1 complex. After 30 min incubation at 37 degrees C with uPA-PAI-1, 93% of the specific immunogold particles were present in cytoplasmic vacuoles vs 17.6% in the case of DFP-uPA. We conclude therefore that in the process of uPA-serpin internalization, uPAR itself is internalized, and that internalization requires the LRP/alpha 2-MR.  相似文献   

14.
Heparin-binding protein (HBP), also known as CAP37, is a proteolytically inactive serine protease homologue that is released from activated granulocytes. However, HBP is not a biologically inactive molecule but rather a multifunctional protein with properties that include the enhancement of LPS-induced TNF-alpha production from monocytes. We have previously demonstrated that HBP is internalized in monocytes. In the current study, we hypothesize that HBP is internalized in monocytes via endocytosis, and this internalization is an important mechanism by which HBP enhances LPS-induced TNF-alpha release. Using whole blood from healthy donors and flow cytometry, we found that colchicine (0.1-10 mM), cytochalasin D (1000 microM), NH4Cl (10-50 mM), and bafilomycin A1 (0.1-3 microM) significantly reduced the affinity of FITC-HBP for CD14-positive monocytes. Using isolated human monocytes and ELISA, we found that colchicine (0.1 mM), cytochalasin D (30 and 300 microM), NH4Cl (30 mM), and bafilomycin A1 (1 microM) significantly reduced the effect of HBP (10 microg/ml) to enhance LPS (10 ng/ml)-induced TNF-alpha release after 24 h. These findings demonstrate that internalization of HBP in monocytes is essential for the enhancement of LPS-induced TNF-alpha release. Transport of HBP to an activating compartment depends on intact F-actin polymerization and endosomal acidification, an important mechanism for endosomal protein sorting and trafficking.  相似文献   

15.
Lipopolysaccharide labeled with fluorescein isothiocyanate (FITC-LPS) was used to examine interactions between endotoxin and plasma membrane in isolated rat hepatocytes and mouse neuroblastoma NB41A3 cells. At the same endotoxin to cell ratio, hepatocytes bound more toxin than did neuroblastoma cells. At a dose of 12 micrograms/mg dry wt, a bound mobile fraction of between 60 and 75% of FITC-LPS was found on hepatocytes at 25 degrees C with a lateral diffusion coefficient (D) of 4.0 X 10(-9) cm2/s. In neuroblastoma cells, the mobile fraction was larger (85-90%), with D 1.0 X 10(-8) cm2/s. D was temperature-dependent between 10 and 37 degrees C and increased from 1.8 X 10(-9) to 1.0 X 10(-8) cm2/s in hepatocytes and from 9.4 X 10(-9) to 1.9 X 10(-8) cm2/s in neuroblastoma cells. In both types of cell, nonviable (cells which did not exclude Trypan blue) as compared to viable cells showed different recovery patterns and 100% of the probe molecules were mobile. These results suggest that: (1) endotoxin binding to mammalian cells consists of two subpopulations with different mobilities; (2) binding of the immobile fraction is dependent on cellular integrity; and (3) the differences in binding, lateral mobility, and size of the immobile fraction in hepatocytes and neuroblastoma cells may be due to variations in membrane composition and/or number of binding sites.  相似文献   

16.
Binding sites for endotoxins (lipopolysaccharides) on human monocytes.   总被引:16,自引:0,他引:16  
The nature of the binding sites for LPS on human monocytes was investigated using [3H] labeled intact LPS from Neisseria meningitidis and from Salmonella minnesota R7, and the [3H] labeled purified inner core region (PS-OMe) of S.m. R7 LPS. In the presence of serum, intact LPS from enterobacterial and nonenterobacterial strains bound to monocytes in a dose-dependent, saturable, and displaceable fashion. N.m. LPS and LPS from the enterobacterial strain of Escherichia coli 0111-B4 bound to the same sites on monocytes as assessed in competitive binding experiments. Specific binding of intact LPS to monocytes occurred through the CD14 molecule as shown by the ability of mAb and of F(ab')2 fragments of mAb directed against specific epitopes of CD14 to inhibit the binding of [3H]-LPS to cells and by the lack of binding of intact LPS to CD14-deficient cells from patients with paroxysmal nocturnal hemoglobinuria. Specific binding of LPS to monocytes was not mediated by the CD11/CD18 complex because mAb to the alpha and beta chains of the Leu-CAM molecules did not alter the binding of LPS to cells and because LPS did not inhibit the binding of labeled mAb to monocytes. [3H]-PS-OMe also bound in a dose-dependent and displaceable fashion to monocytes involving an unidentified, non-CD14, binding site on the cells. Binding of LPS to monocytes also involved nonsaturable binding sites for hydrophobic structures of LPS as evidenced in binding experiments performed in the absence of serum. These observations indicate that intact LPS may interact with the monocyte membrane in at least three ways including serum-dependent binding to CD14 and to a lectin-like receptor, and serum-independent hydrophobic interactions.  相似文献   

17.
Identification of IL-1 receptors on human monocytes   总被引:4,自引:0,他引:4  
The expression and functional analysis of IL-1 beta R on human monocytes were investigated. Binding of 125I-IL-1 to human monocytes was found to be specific and saturable. Scatchard plot analysis revealed a single class of receptors with a binding constant of 600 pM and a receptor density of approximately 100 binding sites per cell. At 37 degrees C 54% of the labeled ligand was internalized over 2 h of incubation. Addition of 0.2% sodium azide to the cells reduced ligand internalization to 9% of total bound. Cross-linking studies revealed that the IL-1R in human monocytes had a Mr of 80 kDa. The addition of IL-1 to monocytes caused changes in membrane Ag expression as assessed by flow cytometric analysis. The results of this study identify IL-1 receptors on monocytes and suggest that IL-1 may act as an effector molecule for monocytes by enhancing expression of Ag correlated with cell differentiation and immune function.  相似文献   

18.
The binding of soluble, multimeric ligands of the major cleavage fragment of complement component 3 (C3b) to polymorphonuclear leukocytes (PMN) has been examined. The oligomers bound entirely via complement C3 receptor type 1 (CR1). There was a single affinity of binding (0.65 nM) at 37 degrees C, while this high affinity binding accounted for only a minority of ligand bound at 0 degree C, with the rest showing a 50-100-fold lower affinity. Azide, fluoride, cytochalasin B, and colchicine had no effect on oligomer binding to PMN. Binding of oligomers had no effect on CR1 expression by PMN. C3b oligomers were not spontaneously internalized by PMN, but were internalized in response to phorbol dibutyrate (PDBu). Both CR1 initially present on the PMN plasma membrane and CR1 initially present in the internal pool of receptors were able to participate in PDBu-induced ligand internalization. C3b oligomers attached to the detergent-insoluble cell cytoskeleton during incubation at 37 degrees C, but cytochalasin B did not inhibit PDBu-induced ligand internalization. Internalized ligand was no longer associated with the detergent-insoluble cytoskeleton. These data demonstrate that 1) some CR1 diffusion is required for optimal oligomer binding; 2) high affinity ligand is not a signal for plasma membrane expression of the internal pool of CR1; 3) CR1 cross-linking is not a sufficient signal for endocytosis; and 4) functional CR1 association with the cytoskeleton which occurs at the plasma membrane is not required for ligand internalization.  相似文献   

19.
Recent data suggest that heat shock protein-70 (HSP-70), an intracellular protein, can exist in the extracellular compartment and signal through the CD14/TLR4 pathway. In this study, we tested the hypothesis that extracellular HSP-70 induces endotoxin (LPS) tolerance. Using human monocyte cell line (THP-1), initial dose-response experiments were conducted to determine a subthreshold concentration of HSP-70 that does not induce NF-kappaB activity. Differentiated THP-1 cells were preconditioned with subthreshold concentration (0.03 microg/ml HSP-70) for 18 h, followed by LPS stimulation (1 microg/ml) for 4 h. Preconditioning with HSP-70 decreased subsequent LPS-mediated NF-kappaB-dependent promoter activity and was accompanied by significant decreases of supernatant TNF levels. Furthermore, human monocytes isolated from human volunteers, subsequently preconditioned with HSP-70, demonstrated LPS tolerance as evidenced by abrogated supernatant TNF levels. Additional experiments were conducted to exclude the possibility of endotoxin contamination of HSP-70 by boiling HSP-70 at 100 degrees C for 1 h or preconditioning with equivalent concentrations of endotoxin as present in the HSP-70 preparation. These experiments indicated that induction of tolerance was not secondary to endotoxin contamination. Neutralization experiments with an anti-HSP-70 Ab confirmed the specificity of HSP-70 in tolerance induction. Preconditioning with HSP-70 attenuated cytosolic degradation of inhibitor kappaB-alpha and inhibited activation of inhibitor kappaB kinase following LPS stimulation. HSP-70 preconditioning decreased phosphorylation of the p65 subunit of NF-kappaB following LPS stimulation. These data suggest a novel role for extracellular HSP-70 in modifying mononuclear cell responses to subsequent LPS challenge.  相似文献   

20.
In a search for genes expressed by dendritic cells (DC), we have cloned cDNAs encoding different forms of an asialoglycoprotein receptor (ASGPR). The DC-ASGPR represents long and short isoforms of human macrophage lectin, a Ca(2+)-dependent type II transmembrane lectin displaying considerable homology with the H1 and H2 subunits of the hepatic ASGPR. Immunoprecipitation from DC using an anti-DC-ASGPR mAb yielded a major 40-kDa protein with an isoelectric point of 8.2. DC-ASGPR mRNA was observed predominantly in immune tissues. Both isoforms were detected in DC and granulocytes, but not in T, B, or NK cells, or monocytes. DC-ASGPR species were restricted to the CD14-derived DC obtained from CD34(+) progenitors, while absent from the CD1a-derived subset. Accordingly, both monocyte-derived DC and tonsillar interstitial-type DC expressed DC-ASGPR protein, while Langerhans-type cells did not. Furthermore, DC-ASGPR is a feature of immaturity, as expression was lost upon CD40 activation. In agreement with the presence of tyrosine-based and dileucine motifs in the intracytoplasmic domain, mAb against DC-ASGPR was rapidly internalized by DC at 37 degrees C. Finally, intracellular DC-ASGPR was localized to early endosomes, suggesting that the receptor recycles to the cell surface following internalization of ligand. Our findings identify DC-ASGPR/human macrophage lectin as a feature of immature DC, and as another lectin important for the specialized Ag-capture function of DC.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号