首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 20 毫秒
1.
BACKGROUND: CD14 is considered to be the major endotoxin (lipopolysaccharide [LPS]) binding molecule on human monocytes. It initiates cellular response, but its role in the clearance of LPS is not well understood. Under conditions that ensure totally CD14-dependent LPS binding on human monocytes, the internalization mechanisms of LPS and CD14 were studied. METHODS: The uptake and intracellular distribution of fluorescein isothiocyanate (FITC)-LPS and CD14 was determined by flow cytometry, trypan blue quenching, and confocal fluorescence microscopy. Incubation of surface-biotinylated cells with LPS at 37 degrees C or 4 degrees C and subsequent subfractionation was used to further characterize CD14 internalization. The amount of the intracellular CD14 was estimated by CD14 enzyme-linked immunosorbent assay (ELISA). RESULTS: The internalization rate of 10 ng/ml FITC-LPS with 1% human serum was 1% of bound endotoxin per minute, whereas CD14 expression did not decrease at the same time surface. We proved the presence of an intracellular CD14 pool (2.68 x 10(6) molecules per unstimulated monocyte) and could show that internalized FITC-LPS molecules can be found in different intracellular compartments than CD14. Subfractionation of LPS-treated biotinylated monocytes showed no change in biotinylated CD14 in the membrane fraction independently of the incubation temperature (37 degrees C or at 4 degrees C) used, indicating that these CD14 molecules were not taken up by an active process. CONCLUSIONS: These data indicate the presence of a large intracellular CD14 pool in monocytes with a yet unknown function, and suggest that LPS and CD14 molecules can be internalized independently after association on the cell surface.  相似文献   

2.
Pulmonary surfactant protein A (SP-A) plays an important part in Ab-independent host defense mechanisms of the lung. In this study we investigated how SP-A interacts with distinct serotypes of bacterial LPS and modulates LPS-elicited cellular responses. SP-A bound to rough forms but not to smooth forms of LPS. In the macrophage-like cell line U937, SP-A inhibited mRNA expression and secretion of TNF-alpha induced by smooth LPS, but rough LPS-induced TNF-alpha expression was unaffected by SP-A. When U937 cells and rat alveolar macrophages were preincubated with SP-A, smooth LPS failed to induce TNF-alpha secretion, whereas rough LPS-induced TNF-alpha secretion was modestly increased. To clarify the mechanism by which SP-A modulates LPS-elicited cellular responses, we further examined the interaction of SP-A with CD14, which is known as a major LPS receptor. Western blot analysis revealed that CD14 was one of the SP-A binding proteins isolated from solubilized U937 cells. In addition, SP-A directly bound to recombinant soluble CD14 (rsCD14). When rsCD14 was preincubated with SP-A, the binding of rsCD14 to smooth LPS was significantly reduced but the association of rsCD14 with rough LPS was augmented. These results demonstrate the different actions of SP-A upon distinct serotypes of LPS and indicate that the direct interaction of SP-A with CD14 constitutes a likely mechanism by which SP-A modulates LPS-elicited cellular responses.  相似文献   

3.
Gloverins are basic, glycine-rich and heat-stable antibacterial proteins (~14- kDa) in lepidopteran insects with activity against Escherichia coli, Gram-positive bacteria, fungi and a virus. Hyalophora gloveri gloverin adopts a random coil structure in aqueous solution but has α-helical structure in membrane-like environment, and it may interact with the lipid A moiety of lipopolysaccharide (LPS). Manduca sexta gloverin binds to the O-specific antigen and outer core carbohydrate of LPS. In the silkworm Bombyx mori, there are four gloverins with slightly acidic to neutral isoelectric points. In this study, we investigate structural and binding properties and activities of B. mori gloverins (BmGlvs), as well as correlations between structure, binding property and activity. Recombinant BmGlv1-4 were expressed in bacteria and purified. Circular dichroism (CD) spectra showed that all four BmGlvs mainly adopted random coli structure (>50%) in aqueous solution in regardless of pH, but contained α-helical structure in the presence of 1,1,1,3,3,3-hexafluoro-2-propanol (HFIP), smooth and rough mutants (Ra, Rc and Re) of LPS and lipid A. Plate ELISA assay showed that BmGlvs at pH 5.0 bound to rough mutants of LPS and lipid A but not to smooth LPS. Antibacterial activity assay showed that positively charged BmGlvs (at pH 5.0) were active against E. coli mutant strains containing rough LPS but inactive against E. coli with smooth LPS. Our results suggest that binding to rough LPS is the prerequisite for the activity of BmGlvs against E. coli.  相似文献   

4.
Bacterial lipopolysaccharides (LPS) are potent endotoxins that are thought to be involved in the pathogenesis of Gram-negative septicemia. The liver is known to be the primary organ responsible for the clearance of LPS from the systemic circulation in mammals. In this work, 125I-labeled LPS have been used in a filtration assay for the specific binding of LPS to intact rat hepatocytes. Eight S-form (smooth) LPS with complete O-specific polysaccharide chains isolated from different O-serotypes of Salmonella and Escherichia coli as well as nine R-form (rough) LPS isolated from Salmonella mutants deficient in synthesis of their core oligosaccharides were used in this study. All 125I-labeled S-form LPS and R-form LPS, except Re, show specific binding to isolated hepatocytes. The binding is saturable, is inhibited with excess unlabeled homologous or heterologous LPS but not lipid A, and is trypsin sensitive. L-Glycero-D-mannoheptose (heptose), a constituent of the inner core region of almost all LPS, is a potent inhibitor of the specific binding of 125I-labeled Rb2 LPS, whereas other monosaccharides, including 3-deoxy-D-manno-2-octulosonic acid (KDO), have weak or negligible inhibitor activity. These results strongly suggest the presence of a lectin-like receptor for the LPS inner core region (heptose-KDO region) on the plasma membrane of rat hepatocytes.  相似文献   

5.
The survival of Salmonella montevideo during serum treatment depends on the presence of an O antigen (O-Ag) associated with the lipopolysaccharide molecule. In this organism, the O antigen is a polysaccharide composed of 0 to more than 55 subunits, each containing 4 mannose residues together with glucose and n-acetylglucosamine. We used a mutant strain of S. montevideo that requires exogenous mannose for the synthesis of O-Ag. Lipopolysaccharide (LPS) was prepared from these cells grown under three different conditions where the availability of exogenous mannose was regulated such that the average number of O-Ag units per LPS molecule, the percentage of LPS molecules bearing long O-Ag side chains, and the percentage of lipid A cores bearing O-Ag were all varied. These changes in LPS profiles were monitored on sodium dodecyl sulfate-polyacrylamide gels, and cells with different LPS profiles were tested for their ability to survive treatment with pooled normal human serum. Survival in serum was associated with LPS that contained an average of 4 to 5 O-Ag units per LPS molecule, and 20 to 23% of the LPS molecules had more than 14 O-Ag units per LPS molecule. Serum survival was less clearly associated with the percentage of lipid A cores covered with O-Ag. We propose, based on these data and on previous work, that the O-Ag polysaccharide provides the cell protection from serum killing by sterically hindering access of the C5b-9 complex to the outer membrane and that a critical density of long O-Ag polysaccharide is necessary to provide protection.  相似文献   

6.
Role of Apolipoprotein A-Ⅰ in Protecting against Endotoxin Toxicity   总被引:6,自引:0,他引:6  
High density lipoprotein (HDL) binds lipopolysaccharide (LPS or endotoxin) and neutralizes its toxicity. We investigated the function of Apolipoprotein A-I (ApoA-I), a major apolipoprotein in HDL, in this process. Mouse macrophages were incubated with LPS, LPS+ApoA-I, LPS+ApoA-I+LFF (lipoprotein-free plasma fraction d>1.210 g/ml), LPS+HDL, LPS+HDL+LFF, respectively. MTT method was used to detect the mortality of L-929 cells which were attacked by the release-out cytokines in LPS-activated macrophages. It was found that ApoA-I significantly decreased L-929 cells mortality caused by LPS treatment (LPS vs. LPS+ApoA-I, P<0.05) and this effect became even more significant when LFF was utilized (LPS vs. LPS+ApoA-I+LFF, P<0.01; LPS vs. LPS+HDL+LFF, P<0.01). There was no significant difference between LPS+ApoA-I+LFF and LPS+HDL+LFF treatment, indicating that ApoA-I was the main factor. We also investigated in vivo effects of ApoA-I on mouse mortality rate and survival time after LPS administration. We found that the mortality in LPS+ApoA-I group (20%) and in LPS+ApoA-I+LFF group (10%) was significantly lower than that in LPS group (80%) (P<0.05, P<0.01, respectively); the survival time was (43.20 +/- 10.13) h in LPS+ApoA-I group and (46.80 +/- 3.79) h in LPS+ApoA-I+LFF group, which were significantly longer than that in LPS group (16.25 +/- 17.28) h (P<0.01). We also carried out in vitro binding study to investigate the binding capacity of ApoA-I and ApoA-I+LFF to fluorescence labeled LPS (FITC-LPS). It was shown that both ApoA-I and ApoA-I+LFF could bind with FITC-LPS, however, the binding capacity of ApoA-I+LFF to FITC-LPS (64.47 +/- 8.06) was significantly higher than that of ApoA-I alone (24.35 +/- 3.70) (P<0.01). The results suggest that: (1) ApoA-I has the ability to bind with and protect against LPS; (2) LFF enhances the effect of ApoA-I; (3) ApoA-I is the major contributor for HDL anti-endotoxin function.  相似文献   

7.
Surfactant proteins A and D bind CD14 by different mechanisms   总被引:13,自引:0,他引:13  
Surfactant proteins A (SP-A) and D (SP-D) are lung collectins that are constituents of the innate immune system of the lung. Recent evidence (Sano, H., Sohma, H., Muta, T., Nomura, S., Voelker, D. R., and Kuroki, Y. (1999) J. Immunol. 163, 387-395) demonstrates that SP-A modulates lipopolysaccharide (LPS)-induced cellular responses by direct interaction with CD14. In this report we examined the structural elements of the lung collectins involved in CD14 recognition and the consequences for CD14/LPS interaction. Rat SP-A and SP-D bound CD14 in a concentration-dependent manner. Mannose and EDTA inhibited SP-D binding to CD14 but did not decrease SP-A binding. The SP-A binding to CD14 was completely blocked by a monoclonal antibody that binds to the SP-A neck domain but only partially blocked by an antibody that binds to the SP-A lectin domain. SP-A but not SP-D bound to deglycosylated CD14. SP-D decreased CD14 binding to both smooth and rough LPS, whereas SP-A enhanced CD14 binding to rough LPS and inhibited binding to smooth LPS. SP-A also altered the migration profile of LPS on a sucrose density gradient in the presence of CD14. From these results, we conclude that 1) lung collectins bind CD14, 2) the SP-A neck domain and SP-D lectin domain participate in CD14 binding, 3) SP-A recognizes a peptide component and SP-D recognizes a carbohydrate moiety of CD14, and 4) lung collectins alter LPS/CD14 interactions.  相似文献   

8.
Mammalian myeloid and epithelial cells express several kinds of antibacterial peptides (alpha-/beta-defensins and cathelicidins) that contribute to the innate host defense by killing invading micro-organisms. In this study we evaluated the LPS-neutralizing activities of cathelicidin peptides human CAP18 (cationic antibacterial proteins of 18 kDa) and guinea pig CAP11 using the CD14(+) murine macrophage cell line RAW264.7 and the murine endotoxin shock model. Flow cytometric analysis revealed that CAP18 and CAP11 inhibited the binding of FITC-conjugated LPS to RAW264.7 cells. Likewise, Northern and Western blot analyses indicated that CAP18 and CAP11 suppressed LPS-induced TNF-alpha mRNA and protein expression by RAW264.7 cells. Interestingly, CAP18 and CAP11 possessed LPS-binding activities, and they strongly suppressed the interaction of LPS with LPS binding protein that mediates the transport of LPS to CD14 to facilitate the activation of CD14(+) cells by LPS. Moreover, when CAP18 and CAP11 were preincubated with RAW264.7 cells, they bound to the cell surface CD14 and inhibited the binding of FITC-LPS to the cells. Furthermore, in the murine endotoxin shock model, CAP18 or CAP11 administration inhibited the binding of LPS to CD14(+) cells (peritoneal macrophages) and suppressed LPS-induced TNF-alpha expression by these cells. Together these observations indicate that cathelicidin peptides CAP18 and CAP11 probably exert protective actions against endotoxin shock by blocking the binding of LPS to CD14(+) cells, thereby suppressing the production of cytokines by these cells via their potent binding activities for LPS and CD14.  相似文献   

9.
Binding of Escherichia coli lipopolysaccharide (LPS) to the two cell types of the adrenal cortex: fasciculata-reticularis and glomerulosa cells has been studied by flow cytometry and using fluorescein-labeled lipopolysaccharide (FITC-LPS). The binding characteristics were different in relation to time course and number of binding sites. Both fasciculata-reticularis and glomerulosa cells bound LPS in a specific and saturable process. Fasciculata-reticularis cells showed a higher affinity for LPS binding than glomerulosa cells as deduced from Hill plots. Unlabeled LPS decreased FITC-LPS binding in both fasciculata-reticularis and glomerulosa cells, suggesting competition of both ligands for a limited number of binding sites. Lipid A seemed not to be essential for binding of LPS to fasciculata-reticularis cells. However, serum constituents inhibited FITC-LPS binding to both cell types, possibly due to cell interaction with HDL. The exposure of cells to LPS during cell culture did not modify the number of binding sites, but revealed cell size and surfaces structure changes.  相似文献   

10.
IL-1 induction-capacity of defined lipopolysaccharide partial structures   总被引:23,自引:0,他引:23  
Natural and synthetic lipid A as well as natural and synthetic oligosaccharide partial structures of LPS were examined in dose-response experiments to define the minimal structure necessary for IL-1 induction and release in cultures of human mononuclear cells. Wild type LPS (S. abortus equi) and rough mutant LPS was active in minimal-doses of 1 to 100 pg/ml, whereas synthetic heptaacyl and hexaacyl lipid A (Salmonella minnesota and Escherichia coli lipid A, respectively) induced IL-1 in minimal-doses of 100 to 1,000 pg/ml and 10 to 1,000 pg/ml, respectively. Nanogram amounts (0.1 to 10 ng/ml) of synthetic monodephospho partial structures of E. coli lipid A were necessary for IL-1 induction. Synthetic pentaacyl partial structures induced IL-1 very weakly. Synthetic tetraacyl and bisacyl partial structures lacking non-hydroxylated fatty acids were not active. Compared to LPS million-fold higher doses of natural and synthetic 3-deoxy-D-manno-octulosonic acid containing core oligosaccharides were necessary for IL-1 induction. Dose-response investigations with LPS and natural or synthetic partial structures established the following hierarchy in IL-1 induction-capacity: LPS greater than lipid A much greater than lipid A partial structures greater than core oligosaccharides greater than oligoacyl lipid A. Lipid A was shown here to be the portion of LPS mainly responsible for induction of IL-1 activity. The high potency of lipid A in inducing IL-1 release and the failure of the precursor Ia of lipid A to induce IL-1 production and release was also observed measuring intracellular IL-1 activity after freeze-thawing the cells. Levels of IL-1 beta mRNA in extracts of mononuclear cells correlated with biologic activity. In co-incubation experiments, precursor Ia of lipid A produced dose-dependent inhibition of production and release of IL-1 activity induced by lipid A or LPS, but not by Staphylococcus epidermidis or PHA. Incubation of cells with precursor Ia for 1h, followed by a medium change and further incubation of stimulus without precursor Ia of lipid A also resulted in inhibition. We conclude that lipid A is the main portion of LPS responsible for induction of IL-1, and that specific activation- and/or binding-mechanisms are involved in stimulation of cells with LPS and/or lipid A.  相似文献   

11.
We developed a novel immunohistochemical method for in vivo detection of endotoxin (LPS) localization in relation to the biologically active region, by use of factor C, an initiation factor in the Limulus clotting system which is mediated by LPS, as a specific affinoligand to LPS, and using rabbit anti-factor C IgG. The competitive inhibition of various LPS, lipid A, anti-LPS factor, or polymyxin B to factor C binding indicates that the immunohistochemical reaction is specific to LPS. Investigating the time course of LPS distribution during 6 hr after IV injection of 5 mg/kg to rats, the greatest uptake of LPS was evident in the reticuloendothelial system (RES), particularly in Kupffer cells, 5 min after injection, and in adrenocortical cells 3 hr after the injection. Shortly after the injection, LPS also appeared in platelet thrombi, intravascular monocytes, and a few neutrophils, and on the surface of endothelial cells in liver, kidney, spleen, lung, and aorta. Both smooth and rough forms of LPS were detectable and there was no apparent difference in their localization. This approach facilitates immunohistochemical analyses of the mechanisms involved in development of endotoxemia.  相似文献   

12.
Cells in the mucosal barrier are equipped to sense and respond to microbes in the lumen and translate this molecular information into signals that can reach local or distant sites. The interaction of P-fimbriated Escherichia coli with human uroepithelial cells is a model to study the molecular mechanism of epithelial cell activation by mucosal pathogens. Here, we examine the role of lipopolysaccharide (LPS) as a co-stimulatory molecule in epithelial cell activation by P-fimbriated E. coli. P-fimbriated clinical isolates or recombinant strains were shown to trigger a fimbriae-dependent epithelial cell cytokine response. Mutational inactivation of the msbB sequences that control lipid A myristoylation drastically impaired monocyte stimulation but not epithelial responses to P-fimbriated bacteria. Polymyxin B or bactericidal/permeability increasing factor (BPI) neutralized the effects of lipid A in the monocyte assay, but did not reduce epithelial responses. Finally, isolated LPS of the smooth, rough and deep rough chemotypes were poor epithelial cell activators. The cells were shown to lack surface CD14 or CD14 mRNA as well as the CD14 co-receptor function and were also very poor LPS responders in the presence of human serum. These results demonstrate that epithelial cell responses to P-fimbriated E. coli are CD14 and LPS independent, and suggest that attaching pathogens can overcome the LPS unresponsiveness of epithelial cells by fimbriae-dependent activation mechanisms.  相似文献   

13.
Bacterial endotoxins or lipopolysaccharides (LPS), cell wall components of gram-negative bacteria, are involved in septic shock. LPS consists of a lipid A tail attached to core and O-antigen polysaccharides, but little is known about the supramolecular structure of LPS in blood. We have developed an approach to locate donor and acceptor probes in sulfobetaine palmitate detergent micelles using steady-state and time-resolved fluorescence resonance energy transfer. C18-fluorescein and several LPS species of varying molecular weight labeled with fluorescein isothiocyanate (FITC-LPS) were the donor probes. Acceptor probes were 1,1-dilinoleyl-3,3,3',3'-tetramethyl indocarbocyanine perchlorate (Fast C18-Dil, Ro approximately 68 A), and octadecyl B rhodamine chloride (C18-Rhd, Ro approximately 58 A). With either acceptor, the transfer was of similar high efficiency when FITC-LPS Salmonella minnesota Re 595 (2,500 mol wt, lacking both core and O-antigen) or C18-fluorescein were the fluorescent donor probes. Thus, the donor FITC-LPS with short polysaccharide chain S. minnesota Re 595 and the control donor C18-fluorescein appear to be close to the micelle surface. The transfer efficiency decreased as the molecular weight of the LPS increased. Separation distances between the longest FITC-LPS, S. minnesota (20,000 mol wt, with a long O-antigen), and the micelle were estimated to be 1.5 Ro or more (approximately 100 A), consistent with an extended conformation for the longer O-antigen polysaccharide chain in the detergent.  相似文献   

14.
Macrophage catabolism of lipid A is regulated by endotoxin stimulation   总被引:1,自引:0,他引:1  
Lipopolysaccharide (LPS) is a Gram-negative bacterial glycolipid that is believed to cause, by virtue of its stimulatory actions on macrophages and other eukaryotic cells, the life-threatening symptoms associated with Gram-negative infections. Macrophages both respond to and catabolically deactivate LPS. The lipid A moiety of LPS is responsible for the stimulatory actions of LPS on macrophages. We have previously developed methods employing a radiolabeled bioactive lipid A precursor, 4'-32P-lipid IVA, to study the interaction of this class of lipids with animal cells (Hampton, R. Y., Golenbock, D. T., and Raetz, C. R. H. (1988). J. Biol. Chem. 263, 14802-14807). In the current work, we have examined the uptake and catabolism of 4'-32P-lipid IVA by the RAW 264.7 cell line in serum-containing medium at physiological temperatures and have studied the effect of LPS stimulation on the ability of these cells to catabolize lipid IVA. RAW 264.7 macrophage-like cells avidly take up 4'-32P-lipid IVA under cell culture conditions at nanomolar concentrations. Uptake of lipid IVA was accompanied by lysosomal dephosphorylation of a fraction of the lipid to yield 4'-monophosphoryl lipid IVA. Chemically generated 4'-monophosphoryl lipid IVA was found to be substantially less bioactive than lipid IVA in the RAW cell, indicating that this catabolic dephosphorylation results in detoxification. In uptake experiments of 3-4 h duration, all metabolism of lipid IVA is blocked by ligands of the macrophage scavenger receptor. In longer experiments (24 h), both scavenger receptor-dependent and -independent uptake are responsible for the lysosomal catabolism of lipid IVA. Preincubation of RAW 264.7 cells with LPS caused dose-dependent inhibition of lipid IVA dephosphorylation. Sufficient LPS stimulation resulted in essentially complete inhibition of lipid IVA catabolism in both short- and long-term uptake experiments. This effect occurred at physiologically relevant concentrations of LPS (IC50 less than 1 ng/ml), and our data indicate that LPS-induced blockade of lipid IVA catabolism was due to the resultant physiological stimulation of the cells, and not inhibition of dephosphorylation by competition for uptake or enzymatic sites or by simple sequestration of labeled lipid IVA by LPS aggregates. We suggest that in the macrophage, LPS can modulate its own catabolism by virtue of its pharmacological properties. This effect of LPS could play a role in LPS pathophysiology as well as in macrophage biology.  相似文献   

15.
The effect of serum on LPS-induced activation of a murine macrophage-like cell line, WEHI-3, was examined. Foetal calf serum strongly inhibited the production of nitric oxide (NO) and TNF-alpha by LPS-stimulated WEHI-3 cells, while it enhanced the production of both by other macrophage-like cell lines, J774.1 and BAM3, on treatment with LPS. This suppressive effect of serum on WEHI-3 cells was most remarkable when the cells were stimulated with rough-chemotype LPS, Ra LPS, Rc LPS and Rd2 LPS. Foetal calf serum also inhibited TNF-alpha production by the same cells stimulated with high concentrations of smooth-form LPS (S LPS; > 1000 ng/mL). Serum-mediated suppression was also observed for expression of the TNF-alpha gene in Rc LPS-stimulated WEHI-3 cells. This suppressive effect of FCS was most remarkable during the 1-2 h before the addition of LPS, but it was not observed when FCS was added at 1 h after the addition of LPS, suggesting dependence on the time of FCS addition to LPS-stimulated cells. No significant difference was observed in the expression of CD14 on WEHI-3 cells cultured in the presence and absence of serum, suggesting that CD14 is not involved in the serum-mediated suppression of these LPS-responses. On the contrary, FCS showed enhancing effects on the production of NO and TNF-alpha by WEHI-3 cells stimulated with low concentrations (< 100 ng/mL) of S LPS and rough mutant Salmonella minnesota Re LPS. These results suggest that the ability of FCS to suppress LPS-induced activation of WEHI-3 cells in mainly dependent on the structure of polysaccharide chains and also on the concentration of LPS employed.  相似文献   

16.
K Jarrell  A M Kropinski 《Microbios》1977,19(76):103-116
The chemical composition of the lipopolysaccharide (LPS) of the smooth strain Pseudomonas aeruginosa PAO 307 and a spontaneously derived rough mutant, obtained by selection for resistance to the LPS-specific phage E79, are compared. The rough LPS was shown to contain lipid A, heptose, 2-keto 3-deoxyoctonic acid, galactosamine, alanine and phosphate but lacked glucose, rhamnose and fucosamine which were important constituents, on a weight basis, of the smooth LPS. These results, and chromatographic analysis of the polysaccharide fraction indicate that the rough strain lacked side chain material and was defective in its inner core region. The chemical date obtained were consistent with a core in the PAO strain similar to that of strain NCTC 1999, enhancing the evidence for a common core polysaccharide in the LPS of P. aeruginosa strains.  相似文献   

17.
In humans and sheep, endotoxin (LPS) administration results in increased growth hormone (GH) concentrations. To determine the role of cytokines in the effect of LPS on GH, sheep were challenged with IL-1beta or TNF-alpha. GH data were compared with results with LH, where the major effects of LPS are known to act via the hypothalamus. Intracerebroventricular (icv) administration of IL-1beta or TNF-alpha did not alter plasma concentrations of GH. Endotoxin was then administered intravenously (iv) in combination with icv injection of IL-1 receptor antagonist (IL-1RA), TNF antagonist (sTNF-R1), or saline. Administration of LPS increased GH (P < 0.0001), although coadministration of IL-1ra or sTNF-R1 icv did not alter GH response to LPS. In contrast, plasma concentrations of LH were profoundly inhibited by icv administration of either cytokine (P < 0.03), but the LH response to LPS was not altered by cytokine antagonists. Intravenous administration of either IL-1beta or TNF-alpha increased plasma concentrations of GH (P < 0.0001). Administration of IL-1RA and sTNF-R1 iv prevented LPS-induced increases in GH. Although LH was suppressed by high iv doses of IL-1beta (P = 0.0063), the antagonists did not alter the LH response to LPS. To determine whether LPS might directly activate GH release, confocal microscopy revealed colocalization of CD14, the LPS receptor, with GH and, to a lesser extent, LH and some prolactin (PRL)-containing cells, but not ACTH or TSH. These data are consistent with the effects of LPS on GH secretion originating through peripheral cytokine presentation to the pituitary, as well as a potential to act directly on selective populations of pituitary cells via CD14.  相似文献   

18.
Bacterial endotoxins (lipopolysaccharides (LPS)) are strong elicitors of the human immune system by interacting with serum and membrane proteins such as lipopolysaccharide-binding protein (LBP) and CD14 with high specificity. At LPS concentrations as low as 0.3 ng/ml, such interactions may lead to severe pathophysiological effects, including sepsis and septic shock. One approach to inhibit an uncontrolled inflammatory reaction is the use of appropriate polycationic and amphiphilic antimicrobial peptides, here called synthetic anti-LPS peptides (SALPs). We designed various SALP structures and investigated their ability to inhibit LPS-induced cytokine secretion in vitro, their protective effect in a mouse model of sepsis, and their cytotoxicity in physiological human cells. Using a variety of biophysical techniques, we investigated selected SALPs with considerable differences in their biological responses to characterize and understand the mechanism of LPS inactivation by SALPs. Our investigations show that neutralization of LPS by peptides is associated with a fluidization of the LPS acyl chains, a strong exothermic Coulomb interaction between the two compounds, and a drastic change of the LPS aggregate type from cubic into multilamellar, with an increase in the aggregate sizes, inhibiting the binding of LBP and other mammalian proteins to the endotoxin. At the same time, peptide binding to phospholipids of human origin (e.g., phosphatidylcholine) does not cause essential structural changes, such as changes in membrane fluidity and bilayer structure. The absence of cytotoxicity is explained by the high specificity of the interaction of the peptides with LPS.  相似文献   

19.
We generated a panel of mAb containing at least one specificity against each of the known chemotypes of the Salmonella LPS core domain and used them to investigate the accessibility of core determinants in smooth LPS. Most of the mAb were reactive with at the most three chemotypes of the core as determined by enzyme immunoassay and failed to bind smooth LPS or any of the complete cores of E. coli. One mAb, MASC1-MM3 (MM3), reacted with six different Salmonella core chemotypes, the R2 core of Escherichia coli and a variety of smooth LPS. This mAb reacted equally well with live and heat-killed bacteria. It bound to 123 of 126 clinical isolates of Salmonella and 11 of 73 E. coli strains in a dot-immunoblot assay. Typical ladder-like patterns of bands were observed after immunoblotting of this mAb against electrophoretically resolved smooth LPS from the five major serogroups of Salmonella species (A, B, C1, D1, and E). MM3 had no reactivity with BSA conjugates of O-Ag polysaccharides from the above serogroups confirming specificity for a core epitope. Polysaccharides derived from or synthetic saccharides representative of the various chemotypes of Salmonella LPS core were tested as competitive inhibitors of the binding of MM3 to LPS. The results led to a conclusion that MM3 recognizes the structure, L-alpha-D-Heptose1-->7-L-alpha-D-Heptose1-->disaccharide present as a branch in the Ra, Rb1, Rb2, Rb3 and Rc but lacking in the Rd1, Rd2, and Re chemotypes of the Salmonella LPS core. This disaccharide seems free and accessible on the basis of the previously calculated conformations of the Salmonella (Ra) and E. coli complete cores (R1, R2, R3, R4, and K12). It therefore defines or contains an epitope within the inner core subdomain of Salmonella LPS that is accessible to antibody in long-chained LPS and in intact bacteria with complete LPS.  相似文献   

20.
Lipopolysaccharide (LPS) is a component of the outer membrane of Gram-negative bacteria, and is the causative agent of endotoxin shock. LPS induces signal transduction in immune cells when it is recognized by the cell surface complex of toll-like receptor 4 (TLR4) and MD-2. The complex recognizes the lipid A structure in LPS, which is buried in the membrane of the outer envelope. To present the Lipid A structure to the TLR4/MD-2, processing of LPS by LPS-binding protein (LBP) and CD14 is required. In previous studies, we expressed recombinant proteins of human MD-2 and CD14 as fusion proteins with thioredoxin in Escherichia coli, and demonstrated their specific binding abilities to LPS. In this study, we prepared a recombinant fusion protein containing 212 amino terminal residues of human LBP (HLB212) by using the same expression system. The recombinant protein expressed in E. coli was purified as a complex form with host LPS. The binding was not affected by high concentrations of salt, but was prevented by low concentrations of various detergents. Both rough-type LPS lacking the O antigen and smooth-type LPS with the antigen bound to HLBP212. Therefore, oligosaccharide repeats appeared to be unnecessary for the binding. A nonpathogenic penta-acylated LPS also bound to HLBP212, but the binding was weaker than that of the wild type. The hydrophobic interaction between the LBP and acyl chains of lipid A appears to be important for the binding. The recombinant proteins of LPS-binding molecules would be useful for analyzing the defense mechanism against infections.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号