首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 296 毫秒
1.
大豆体细胞胚增殖保存与萌发植株体系的建立   总被引:4,自引:0,他引:4  
以大豆(Glycine max(L.)Merr.)未成熟子叶为外植体,用高浓度生长素诱导东北地区主栽大豆的18个基因型体细胞胚胎发生,诱导率为0.29%~77.62%.在此基础上成功地诱导10个大豆基因型产生可继代增殖的体细胞胚,诱导率在5.2%~22.1%之间.经在固体培养基上多次继代增殖,首次建立了可在固体培养基上继代增殖的大豆体细胞胚萌发再生体系,继代一年以上的体细胞胚仍具有萌发能力和正常育性,得到了结荚植株.此体系的建立为大豆的遗传转化提供了新的、更为有效的受体体系.  相似文献   

2.
大蕉未成熟雄花接种到胚性愈伤组织诱导培养基中,4~5个月后可诱导出胚性愈伤组织,并可在继代培养基上增殖.胚性愈伤组织转移到体细胞胚诱导培养基中可诱导出体细胞胚.体细胞胚在成熟培养基上培养2个月后转移到含有0.2mg·L-1 6-BA的分化培养基上可以萌发,进而形成再生植株.组织学切片证明所诱导的愈伤组织是胚性组织,其所产生的体胚具有典型的单子叶植物体细胞胚的组织结构.  相似文献   

3.
贡蕉胚性细胞悬浮系的建立和植株再生   总被引:21,自引:0,他引:21  
鲜食蕉品种的高度不育性和多倍性制约了用传统育种方法培育生产实践中所需的新品种 ,建立稳定的胚性细胞悬浮系是香蕉生物技术育种的前提。以目前国内尚未建立该体系的鲜食蕉品种贡蕉 (AA)未成熟雄花序的第 1~ 15位花梳为外植体 ,对胚性细胞悬浮系的建立和植株再生体系进行了优化。结果表明 ,5~ 6个月的培养后可获得分生小球体和浅黄色、松散易碎的胚性愈伤组织。 9μmol/L 2,4 D对外植体愈伤组织的诱导效果最好 ,诱导率为 40.96 % ,胚性愈伤组织诱导率可达7.45 % ,其中5.79%的胚性愈伤组织来源于第 6~12号位置的花梳。胚性愈伤组织悬浮培养后 ,通过 3个月的筛选和继代培养 ,可得到均质的胚性细胞悬浮系。该培养体系合适继代周期为 15d ,继代时合适的起始接种量为每 30mL培养基加 2mLPCVECS。培养 6个月的胚性细胞在体细胞胚诱导培养基中培养15d后可见到白色半透明体细胞胚的发生 ,体细胞胚诱导率为 2 80× 103个 mLPCV。成熟体细胞胚的萌发率为 17 2 8% ,其中发育成正常的再生植株的百分率为 14 16 %。  相似文献   

4.
芸芥体细胞胚胎发生及植株再生体系的建立   总被引:1,自引:0,他引:1  
以芸芥子叶为外植体,诱导芸芥体细胞胚胎发生并建立植株再生体系.结果表明:基因型及植物生长调节剂对芸芥体细胞胚胎发生均有一定的影响,其中以含有1.0mg·L-12,4-D的MS培养基诱导芸芥体细胞胚胎发生的效果最优.在MS 0.2mg·L-12,4-D培养基上,胚性愈伤组织可大量增殖.对芸芥体细胞胚胎成熟的研究表明,体胚在N6培养基上成熟最佳,且45.2%的成熟体胚可在1/2MS 0.1mg·L-1IBA培养基上萌发生长.  相似文献   

5.
花生体细胞胚的诱导及其植株再生   总被引:8,自引:0,他引:8       下载免费PDF全文
采用不同成熟度的花生胚轴为外植体进行体细胞胚诱导及植株再生研究,结果表明,成熟胚轴在高浓度2,4-D的MS培养基中,经过30d左右的培养,可直接诱导产生出大量的体细胞胚,含40mgL~-12,4-D的培养基中体细胞胚的诱导率达100%,平均每个外植体产生11.58个体细胞胚.体细胞胚的继代培养需降低2,4-D的浓度(1-20mgL~-1).未成熟胚轴的体细胞胚诱导及继代培养的2,4-D浓度宜为10mgL~-1.将诱导的体细胞胚转接到合5-10mgL~-1BA的MS培养基中,体细胞胚能够萌发再生成无根小植株,将其转接到生根培养基中可获得完整小植株.  相似文献   

6.
酿酒葡萄"梅尔诺"再生系统建立的研究   总被引:6,自引:0,他引:6  
以酿酒葡萄“梅尔诺”离体胚珠、叶柄为材料.通过控制激素水平、光照和温度等,对建立再生体系的器官发生途径和体胚发生途径进行了研究。结果表明,体胚的诱导和不定芽的再生与基本培养基、叶柄的着生部位、生长调节物质种类和浓度等因素有关。由“梅尔诺”的胚珠愈伤组织再生出体细胞胚的最佳培养基配方为CPSE培养基(CP287 BA 0.2mg/L NOA 1.0mg/L),体细胞胚再生率可达47.50%。“梅尔诺”体细胞胚在CPSE培养基上100%萌发为芽状,将其切断置于培养基MS TDZ 4.0mg/L上可直接诱导出绿色不定芽,再生率为52.25%;同时在培养基MS TDZ2.0mg/L上获得了“梅尔诺”离体叶柄再生不定芽.再生率为62.42%.二者再生的不定芽的最他增殖培养基为MS BA0.5mg/L。“梅尔诺”体细胞胚的萌发芽在WPM培养基中能很好的生根及成苗,并建立了单芽茎段微繁体系。  相似文献   

7.
以盐肤木(Rhus chinensis Mill.)幼胚为外植体,研究不同植物生长调节剂组合对其愈伤组织诱导及体细胞胚胎发生的影响,以建立盐肤木体细胞胚胎发生及植株再生体系。结果表明,最适愈伤组织诱导培养基为MS+6-BA 0.2 mg/L+2,4-D 1.0 mg/L,诱导率为84.57%,诱导出的初代愈伤组织白色或淡黄色,质地疏松,表面光滑,为非胚性愈伤。初代愈伤组织转移到1/2 MS+6-BA 2 mg/L+NAA 0.5 mg/L培养基上培养1个月后,长出淡黄色质地紧密的胚性愈伤组织,诱导率高达100%,在此培养基上胚性愈伤组织增殖倍数为854.73%。所获得的胚性愈伤组织转接到1/2 MS+6-BA 2 mg/L+NAA 0.5 mg/L+蔗糖4%的培养基上培养1个月后可诱导体细胞胚胎发生,诱导率可达32.67%。诱导得到的体细胞胚胎经历球形胚、心形胚、鱼雷胚、子叶胚进一步分化发育成苗。无菌苗炼苗后栽种到泥炭土∶蛭石∶珍珠岩为2∶1∶1的生长基质上,能100%稳定成活。经过细胞学观察分析,体细胞胚的发育与合子胚相似。  相似文献   

8.
影响大豆体细胞胚诱导因素的研究   总被引:6,自引:0,他引:6  
曲桂芹  张贤泽  霍俊伟 《植物研究》2001,21(2):210-214,T001
体细胞胚的诱导是大豆体外再生的关键。基因型,诱导光周期,外植体的英位,蔗糖浓度等因素,可导致诱导频率及正常胚比例不同,影响植株再生。本研究选用黑龙江省主栽大豆基因型的未成熟子叶,在含高浓度生长素的MSB培养基上诱导体细胞胚产生。合丰25和东农7819为优选基因型,生育前期下部英位大小为2-4mm未成熟子叶体细胞胚发生效果最好;四种光周期下体细胞胚诱导频率相近,但连续弱光了正常胚比例高;NAA诱导优于2-4,D;10mg/1NAA与1.5%蔗糖配比组合最佳。  相似文献   

9.
研究了影响大豆幼胚培养体细胞胚胎发生频率的9个因素。诱导体细胞胚胎发生的适宜幼胚长度为4mm;随着供体植株发育阶段的提高诱导频率下降;最适基本培养基为MS培养基; 蔗糖浓度从1.5%提高到9%,诱导频率逐渐下降;过高的维生素B1浓度对胚胎发生不利;2,4 — D的诱导效果优于NAA,适宜的2,4—D浓度为20ppm; 光、暗处理与生长素种类和浓度之间存在交互作用,接种方式对诱导频率影响很大,体细胞胚只在下表皮与培养基接触的幼子叶的上表皮上产生,当上表皮与培养基接触时,两个表皮都不能产生体细胞胚;被试的所有基因型都能被诱导胚胎发生,不同基因型的诱导频率存在差异。  相似文献   

10.
目的 虽然大豆遗传转化取得了较大进展,但其转化效率仍然偏低。因此,有必要建立一个更加简单和高效的大豆转化系统。本研究的目的是以大豆成熟种子萌发产生的叶片(MSDL)为靶外植体,高频诱导和转化大豆体细胞胚(somatic embryos,SEs)。方法 萌发7 d的大豆幼苗上摘取叶片,并将其切成1.2 cm×1.2 cm的外植体。将叶片外植体置于胚胎诱导培养基(EIM)上诱导体细胞胚发生。将叶片外植体浸入携带p CAMBIA1301植物表达载体的农杆菌EHA105菌液进行遗传转化。结果 MSDL (包括初生叶和次生叶)均能被诱导产生SEs。大多数SE发生在叶片切口处。所试的不同基因型均能诱导SEs。SEs的最高诱导率为95.0%。β葡糖醛酸糖苷酶(GUS)染色结果表明,平均转化效率达到75.4%。DNA印迹(Southern blot)结果表明,目的基因稳定整合在大豆基因组中,拷贝数为1~3个。结论 本研究建立了以大豆MSDL为靶组织的体细胞胚高频诱导和遗传转化。该系统有望在大豆基因组编辑技术的开发上得到应用。  相似文献   

11.
大豆体细胞胚胎发生与农杆菌介导的遗传转化   总被引:6,自引:1,他引:5  
王萍  王罡  季静  曾凡亭  黄彬城  曹江  吴颖 《遗传》2004,26(5):695-700
以55个大豆基因型未成熟子叶为外植体,用高浓度2,4-D诱导大豆体细胞胚胎发生与植株再生,并对生产上种植面积大、体细胞胚胎发生率高的大豆基因型用农杆菌介导法进行遗传转化。结果表明,东北地区主栽的大豆基因型中有14个基因型体细胞胚胎发生率超过40%。用含有pGBI121S4ABC质粒的LBA4404农杆菌侵染5个东北地区主栽大豆基因型的2147个未成熟子叶,经卡那霉素抗性筛选得到12株PCR阳性植株。 Abstract:Somatic embryogenesis was induced and the regenerated plants were obtained by higher concentrations of auxins with immature cotyledon of 55 genotypes in soybean. Bivalent insect resistant genes were transformed into immature cotyledon of soybean which have high frequency of somatic embryogenesis via Agrobacterium-mediated. The results showed that 14 genotypes possessed high frequency of somatic embryogenesis (more than 40%) among soybean genotypes from Northeast area. 2147 immature cotyledons of 5 different soybean genotypes cultured in Northeast area were inoculated with LBA4404 (including pGBI121S4ABC plasmid). 12 regenerated plants selected by Kanamicy gave positive PCR reaction.  相似文献   

12.
Somatic embryogenesis was successfully induced with auxin in high concentration from immature cotyledons of eighteen varieties of soybean (Glycine max (L.) Merr.) adaptable for planting in Northeast China. The frequency of somatic embryogenesis varied from 0.29% to 77.62% among eighteen genotypes of soybean. The proliferative somatic embryos were gained from ten varieties of soybean at rate of 5.2%-22.1%. For the first time, plantlets were obtained even after subcultured and maintained on solid medium for over one year. This system provided a new and efficient receptor for genetic transformation of soybean.  相似文献   

13.
Embryogenic potential of 19 soybean cultivars originated from different eco-geographic regions (Europe, China, America and Far East) has been established and analyzed. Cultivars TSZ-14, Amurskaja-111, Gribovskaja mestnaja were emphasized as highly embryogenic genotypes. Cultivar Mantherova biela vel. revealed the highest embryogenic potential (80%). The comparison of embryogenic potential of the Ukrainian cultivars with given data indicated various parameters which could affect the induction of soybean somatic embryogenesis. It had also been supposed that cultivars from the Far East and Europe could have the potential for further screening of new highly embryogenic genotypes. The data obtained enlarge the data base pool of the soybean somatic embryogenesis research and enable using the most appropriate cultivars for further genetic improvement.  相似文献   

14.
From a preliminary experiment on 98 Chinese soybean varieties, 12 varieties with somatic embryogenesis frequency ranging from 0.0% to 85.7% were selected for further study in order to enhance the efficiency of somatic embryogenesis and plant regeneration. The effects of different mannitol concentrations, abscisic acid (ABA) concentrations, and embryo explant ages (sizes) were investigated. Significant differences in somatic embryogenesis were found among the 12 soybean varieties, with initiation frequencies varying from 22.1% to 89.0% under suitable mannitol concentration, and with N25281, N25263, and N06499 having the highest somatic embryogenic capacity. The results showed that all three factors were relevant for raising rates of callus initiation and somatic embryogenesis, but with differential responses among the genotypes. The treatment of 3.0% (w/v) mannitol, 5 mg l−1 ABA, and a 4- to 5-mm-sized explant was found to be optimal for somatic embryogenesis, generating the highest explant-based regeneration rate at 83.0%. The greatest average number of plantlets regenerated per explant (1.35) was observed in N25281. The above results provide a basis for efficient regeneration of soybean and are informative for the development of genetic transformation systems in Chinese soybean germplasm.  相似文献   

15.
High embryogenesis capacity of soybean (Glycine max (L.) Merr.) in vitro possessed potential for effective genetic engineering and tissue culture. The objects of this study were to identify quantitative trait loci (QTL) underlying embryogenesis traits and to identify genotypes with higher somatic embryogenesis capacity. A mapping population, consisting of 126 F5:6 recombinant inbred lines, was advanced by single-seed-descent from cross between Peking (higher primary and secondary embryogenesis) and Keburi (lower primary and secondary embryogenesis). This population was evaluated for primary embryogenesis capacity from immature embryo cultures by measuring the frequency of somatic embryogenesis (FSE), the somatic embryo number per explant (EPE) and the efficiency of somatic embryogenesis (ESE). A total of 89 simple sequence repeat markers were used to construct a genetic linkage map. Six QTL were associated with somatic embryogenesis. Two QTL for FSE were found, QFSE-1 (Satt307) and QFSE-2 (Satt286), and both were located on linkage group C2 that explained 45.21 and 25.97% of the phenotypic variation, respectively. Four QTL for EPE (QEPE-1 on MLG H, QEPE-2 on MLG G and QEPE-3 on MLG G) were found, which explained 7.11, 7.56 and 6.12% of phenotypic variation, respectively. One QTL for ESE, QESE-1 (Satt427), was found on linkage group G that explained 6.99% of the phenotypic variation. QEPE-2 and QESE-1 were located in the similar region of MLG G. These QTL provide potential for marker assistant selection of genotypes with higher embryogenesis.  相似文献   

16.
Six commercially important soybean cultivars and one control cultivar were compared for differences in induction-efficiency of somatic embryogenesis, primary embryo yield, and embryo conversion. Cotyledons from immature seeds of similar developmental stage for all soybean cultivars were used for embryo induction. The experiments utilized a Latin square design to exclude the effect of differential lighting and position due to plate location in the growth chamber on the embryogenesis process. Results indicated that the efficiency of embryo induction and yield of primary somatic embryos were genotype-dependent. In contrast, no dependence on genotype was observed for the conversion of embryos to form roots and shoots. The percentage of cotyledons that gave a positive embryogenic response ranged from 26 to 89% for the soybean cultivars tested. The average number of primary globular-stage embryos per responding cotyledon after one month on induction medium ranged from 6 to 13 among the seven cultivars. Conversion frequencies for all genotypes ranged from 27 to 45%.  相似文献   

17.
A direct somatic embryogenesis protocol was developed for four cultivars of Nicotiana species, by using leaf disc as an explant. Direct somatic embryogenesis of Nicotiana by using BAP and IAA has not been investigated so far. This method does not require formation of callus tissues which leads to somaclonal variations. The frequency of somatic embryogenesis was strongly influenced by the plant growth hormones. The somatic embryos developing directly from explant tissue were noticed after 6 d of culture. Somatic embryogenesis of a high frequency (87–96%) was observed in cultures of the all four genotypes (Nicotiana tabacum, N. benthamiyana, N. xanthi, N. t cv petihavana). The results showed that the best medium for direct somatic embryogenesis was MS supplemented with 2.5 mg/l, 0.2 mg/l IAA and 2% sucrose. Subculture of somatic embryos onto hormone free MS medium resulted in their conversion into plants for all genotypes. About 95% of the regenerated somatic embryos germinated into complete plantlets. The plants showed morphological and growth characteristics similar to those of seed-derived plants. Explants were transformed using Agrobacterium tumifacious LBA4404 plasmid pCAMBIA1301 harboring the GUS gene. The regenerated transgenic plants were confirmed by PCR analysis and histochemical GUS assay. The transformation efficiency obtained by using the Agrobacterium- mediated transformation was more than 95%. This method takes 6 wk to accomplish complete transgenic plants through direct somatic embryogenesis. The transgenic plantlets were acclimatized successfully with 98% survival in greenhouse and they showed normal morphological characteristics and were fertile. The regeneration and transformation method described herein is very simple, highly efficient and fast for the introduction of any foreign gene directly in tobacco through direct somatic embryogenesis.  相似文献   

18.
Soybean (Glycine max L. Merrill) somatic embryos have been useful for assaying seed-specific traits prior to plant recovery. Such traits could be assessed more accurately if somatic embryos more closely mimicked seed development. Amino acid supplements, carbon source, and abscisic acid and basal salt formulations were tested in an effort to modify existing soybean embryogenesis histodifferentiation/maturation media to further normalize the development of soybean somatic embryos. The resultant liquid medium, referred to as soybean histodifferentiation and maturation medium (SHaM), consists of FNL basal salts, 3% sucrose, 3% sorbitol, filter-sterilized 30 mM glutamine and 1 mM methionine. SHaM-derived somatic embryos are more similar to seed in terms of protein and fatty acid/lipid composition, and conversion ability, than somatic embryos obtained from traditional soybean histodifferentiation and maturation media.  相似文献   

19.
Seven soybean (Glycine max (L.) Merr.) cultivars zoned in forest-steppe and marshy woodlands of Ukraine: "Chernuatka", "Vasylkivska", "Kyivska-91", "Kyivska-27", "Marjana", "Chernobura" and "Altair" were established in vitro for somatic embryogenesis inducing. Cultivars "Marjana" (88%) and "Vasylkivska" (86%) demonstrated the highest embryogenic capacity among all the tested cultivars. During the further plant regeneration cultivars "Marjana" and "Kyivska-91" showed the best capacity to form adult plants despite the fact that embryogenic capability of the cultivar "Kyivska-91" was 71%. According to the obtained data three genotypes were selected for the further investigation of effective methods of biolictic transformation of ukrainian cultivars.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号