首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
Castilleja levisecta (Scrophulariaceae), the golden paintbrush, is an insect-pollinated herbaceaous perennial found in the Pacific Northwest. Currently restricted to two island populations off British Columbia and nine populations (eight on islands) in Washington, C. levisecta is a rare species threatened with extinction. Allozymes were used to describe genetic diversity and structure in these eleven populations. Despite its threatened status and small geographic range, exceptionally high levels of genetic diversity are maintained within C. levisecta. All sixteen of the loci resolved were polymorphic within the species (Ps=100%), while the mean percentage of loci polymorphic within populations (Pp) was 65.7%. The mean number of alleles per polymorphic locus (APs) was 2.94 within the species and averaged 2.38 within populations (APp). Genetic diversity (Hes) was 0.285 for the species, whereas mean population genetic diversity (Hep) was 0.213. Smaller populations had, on average, fewer observed alleles and less genetic diversity. A significant negative correlation (r = –0.72) was found between genetic identity and geographic distance, indicating reduced gene flow between distant populations. The most geographically isolated population was one of the larger populations, one of the most genetically diverse and the most genetically divergent. A wide range of pairwise population genetic identities (I = 0.771 – 0.992) was found, indicating considerable genetic divergence between some populations. Overall, 19% of the total genetic diversity was distributed among populations. Results of this survey indicate that genetic augmentation of existing populations is unnecessary. The high allelic diversity found for the species and within its populations holds promise for conservation and restoration efforts to save this rare and threatened plant species.  相似文献   

2.
There are currently few predictions about when evolutionary processes are likely to play an important role in structuring community features. Determining predictors that indicate when evolution is expected to impact ecological processes in natural landscapes can help researchers identify eco-evolutionary ‘hotspots', where eco-evolutionary interactions are more likely to occur. Using data collected from a survey in freshwater cladoceran communities, landscape population genetic data and phenotypic trait data measured in a common garden, we applied a Bayesian linear model to assess whether the impact of local trait evolution in the keystone species Daphnia magna on cladoceran community trait values could be predicted by population genetic properties (within-population genetic diversity, genetic distance among populations), ecological properties (Simpson's diversity, phenotypic divergence) or environmental divergence. We found that the impact of local trait evolution varied among communities. Moreover, community diversity and phenotypic divergence were found to be better predictors of the contribution of evolution to community trait values than environmental features or genetic properties of the evolving species. Our results thus indicate the importance of ecological context for the impact of evolution on community features. Our study also demonstrates one way to detect signatures of eco-evolutionary interactions in communities inhabiting heterogeneous landscapes using survey data of contemporary ecological and evolutionary structure.  相似文献   

3.
Extirpated organisms are reintroduced into their former ranges worldwide to combat species declines and biodiversity losses. The growing field of reintroduction biology provides guiding principles for reestablishing populations, though criticisms remain regarding limited integration of initial planning, modeling frameworks, interdisciplinary collaborations, and multispecies approaches. We used an interdisciplinary, multispecies, quantitative framework to plan reintroductions of three fish species into Abrams Creek, Great Smoky Mountains National Park, USA. We first assessed the appropriateness of habitat at reintroduction sites for banded sculpin (Cottus carolinae), greenside darter (Etheostoma blennioides), and mottled sculpin (Cottus bairdii) using species distribution modeling. Next, we evaluated the relative suitability of nine potential source stock sites using population genomics, abundance estimates, and multiple‐criteria decision analysis (MCDA) based on known correlates of reintroduction success. Species distribution modeling identified mottled sculpin as a poor candidate, but banded sculpin and greenside darter as suitable candidates for reintroduction based on species‐habitat relationships and habitats available in Abrams Creek. Genotyping by sequencing revealed acceptable levels of genetic diversity at all candidate source stock sites, identified population clusters, and allowed for estimating the number of fish that should be included in translocations. Finally, MCDA highlighted priorities among candidate source stock sites that were most likely to yield successful reintroductions based on differential weightings of habitat assessment, population genomics, and the number of fish available for translocation. Our integrative approach represents a unification of multiple recent advancements in the field of reintroduction biology and highlights the benefit of shifting away from simply choosing nearby populations for translocation to an information‐based science with strong a priori planning coupled with several suggested posteriori monitoring objectives. Our framework can be applied to optimize reintroduction successes for a multitude of organisms and advances in the science of reintroduction biology by simultaneously addressing a variety of past criticisms of the field.  相似文献   

4.
Differentiation in the size and number of seeds among populations or particular individuals of a given species may depend on genetic features and environmental conditions. The objective of our study was to answer two questions: whether any differences exist in the size and shape of utricles among Carex spicata populations growing in several plant communities and whether the hypothesized differences remain constant in ‘common garden’ conditions (i.e. if the sedges grown in different plant communities are evolving distinctly separate ecotypes). We studied utricle morphological traits (projected area, width, length, W/L ratio and projected perimeter) and number of utricles per spike collected from plants grown in five different plant communities (natural sites) and from plants transferred to common garden conditions. C. spicata utricles showed significant variability of morphological traits that depended on the plant community of origin. Among five plant communities, the largest utricles were found in Agropyron repens–Urtica dioica and Convolvulo arvensis–Agropyretum repentis communities, while the smallest ones were in plants from the Lolio-Plantaginetum community. The similarity of the analyzed populations regarding sedge utricle traits corresponded to the similarity of plant communities where the populations had grown. Moreover, the differences in utricle traits collected from natural conditions remained stable in common garden conditions. This indicated that differences in traits among utricles had a physiological dependence on different biotope conditions or different interspecific interactions prevailing in the particular plant communities. The relationship between the similarities in the diaspores of the populations studied and the similarities in the ecological conditions of the communities may also indicate that the variability of utricles is important for evolution and adaptation.The results support the hypothesis that C. spicata populations in different communities are producing separate ecotypes, i.e. specific species forms with genetically fixed traits adapted to narrowly determined habitat conditions.  相似文献   

5.
Forest fragmentation may negatively affect plants through reduced genetic diversity and increased population structure due to habitat isolation, decreased population size, and disturbance of pollen‐seed dispersal mechanisms. However, in the case of tree species, effective pollen‐seed dispersal, mating system, and ecological dynamics may help the species overcome the negative effect of forest fragmentation. A fine‐scale population genetics study can shed light on the postfragmentation genetic diversity and structure of a species. Here, we present the genetic diversity and population structure of Cercis canadensis L. (eastern redbud) wild populations on a fine scale within fragmented areas centered around the borders of Georgia–Tennessee, USA. We hypothesized high genetic diversity among the collections of C. canadensis distributed across smaller geographical ranges. Fifteen microsatellite loci were used to genotype 172 individuals from 18 unmanaged and naturally occurring collection sites. Our results indicated presence of population structure, overall high genetic diversity (HE = 0.63, HO = 0.34), and moderate genetic differentiation (FST = 0.14) among the collection sites. Two major genetic clusters within the smaller geographical distribution were revealed by STRUCTURE. Our data suggest that native C. canadensis populations in the fragmented area around the Georgia–Tennessee border were able to maintain high levels of genetic diversity, despite the presence of considerable spatial genetic structure. As habitat isolation may negatively affect gene flow of outcrossing species across time, consequences of habitat fragmentation should be regularly monitored for this and other forest species. This study also has important implications for habitat management efforts and future breeding programs.  相似文献   

6.
Species can respond to environmental pressures through genetic and epigenetic changes and through phenotypic plasticity, but few studies have evaluated the relationships between genetic differentiation and phenotypic plasticity of plant species along changing environmental conditions throughout wide latitudinal ranges. We studied inter‐ and intrapopulation genetic diversity (using simple sequence repeats and chloroplast DNA sequencing) and inter‐ and intrapopulation phenotypic variability of 33 plant traits (using field and common‐garden measurements) for five populations of the invasive cordgrass Spartina densiflora Brongn. along the Pacific coast of North America from San Francisco Bay to Vancouver Island. Studied populations showed very low genetic diversity, high levels of phenotypic variability when growing in contrasted environments and high intrapopulation phenotypic variability for many plant traits. This intrapopulation phenotypic variability was especially high, irrespective of environmental conditions, for those traits showing also high phenotypic plasticity. Within‐population variation represented 84% of the total genetic variation coinciding with certain individual plants keeping consistent responses for three plant traits (chlorophyll b and carotenoid contents, and dead shoot biomass) in the field and in common‐garden conditions. These populations have most likely undergone genetic bottleneck since their introduction from South America; multiple introductions are unknown but possible as the population from Vancouver Island was the most recent and one of the most genetically diverse. S. densiflora appears as a species that would not be very affected itself by climate change and sea‐level rise as it can disperse, establish, and acclimate to contrasted environments along wide latitudinal ranges.  相似文献   

7.
Parasite communities tend to be dissimilar in hosts that are geographically, phylogenetically, ecologically and developmentally distant from one another. The decay of community similarity is a powerful and increasingly common method of studying parasite beta diversity, but most studies have examined only a single type of distance. Here, we evaluate distances based on the phylogeny, ecology, spatial proximity and size of hosts, as predictors of the similarity of parasite communities in individual hosts, host populations and host species. We surveyed parasites in six species of fish collected simultaneously from six localities in the St. Lawrence River, Canada, and species in a common group of larval parasites were discriminated using DNA sequences from barcode region of cytochrome c oxidase I. Distances based on the habitat use patterns of host species were good predictors of short‐term, ecological similarity of parasite communities, such as that operating at the scale of the individual host. The genetic distance between host species was associated with almost all types of similarity at all scales, particularly qualitative and phylogenetic similarity of parasite communities at the level of populations and meta‐populations of hosts. The trophic level, diet, spatial proximity and size of hosts were poor predictors of parasite community similarity. The increased taxonomic resolution provided by molecular data increased the explanatory power of regression models, and different factors were implicated when parasite species were distinguished with DNA barcodes than when larval parasites were lumped into morphospecies, as is commonly practiced.  相似文献   

8.
Tropical macrophytes sold in the live garden trade are perceived as unlikely to invade temperate regions owing to climate mismatches. Here we study two tropical macrophytes (Pistia stratiotes and Eichhornia crassipes) not previously considered an invasion risk but which were recently discovered in the Great Lakes, and determine mechanisms that may be responsible for their continued presence including human introduction, reproduction through viable seeds and tolerance of winter conditions. Surveys conducted in 2011 and 2012 revealed recurrent presence of one or both species at some sites. Macrophytes in in situ enclosures failed to survive winter conditions, with plant health declining progressively prior to mortality. Water hyacinth seeds were field-collected, identified using Sanger sequencing, and germinated at 28°C with or without scarification. Germination was highest for scarified versus non-scarified seeds. Human introduction was observed at two sites, one involving both species, the other only water hyacinth. These species likely persist through a combination of annual reintroduction (both species) and possibly by production of viable seed (water hyacinth). Macrophytes, particularly water hyacinth, that were not previously viewed as a threat to the Great Lakes owing to environmental incompatibility may need to be reassessed.  相似文献   

9.
  • The growing number of restoration projects worldwide increases the demand for seed material of native species. To meet this demand, seeds are often produced through large‐scale cultivation on specialised farms, using wild‐collected seeds as the original sources. However, during cultivation, plants experience novel environmental conditions compared to those in natural populations, and there is a danger that the plants in cultivation are subject to unintended selection and lose their adaptation to natural habitats. Although the propagation methods are usually designed to maintain as much natural genetic diversity as possible, the effectiveness of these measures have never been tested.
  • We obtained seed of five common grassland species from one of the largest native seed producers in Germany. For each species, the seeds were from multiple generations of seed production. We used AFLP markers and a common garden experiment to test for genetic and phenotypic changes during cultivation of these plants.
  • The molecular markers detected significant evolutionary changes in three out of the five species and we found significant phenotypic changes in two species. The only species that showed substantial genetic and phenotypic changes was the short‐lived and predominantly selfing Medicago lupulina, while in the other, mostly perennial and outcrossing species, the observed changes were mostly minor.
  • Agricultural propagation of native seed material for restoration can cause evolutionary changes, at least in some species. We recommend caution, particularly in selfing and short‐lived species, where evolution may be more rapid and effects may thus be more severe.
  相似文献   

10.
Carpinus oblongifolia is an endemic species and the extant wild populations show a fragmentation distribution in the Baohua Mountain of Jiangsu Province in eastern China. Understanding of genetic diversity plays an important role in C. oblongifolia survival and sustainable development. The wild C. oblongifolia population was artificially divided into four subpopulations according to the microhabitats, and another two subpopulations were constructed by progeny seedlings cultivated with the mature seeds. Then, the leaf buds of 80 individuals from six subpopulations were sampled to develop single nucleotide polymorphisms (SNPs) using specific-locus amplified fragment sequencing (SLAF-seq). Based on these SNPs, we aimed to characterize the genetic diversity and population structure of C. oblongifolia and provide an illumination and reference for effective management of such a small endemic population. The level of genetic diversity was low at the species level, and the progeny subpopulations had a relatively higher genetic diversity than the wild subpopulations. This may be attributed to a high gene flow and an excess heterozygosity to reduce the threat of genetic drift-based hazards. Moreover, the progeny subpopulations had the ability to form new clusters and a great contribution to the genetic structure variation of C. oblongifolia. These results will assist with the development of conservation and management strategies, such as properly evacuating competitive trees to provide more chance for pollen and seed flow in situ conservation, and establishing sufficient seedling plantlets under laboratory conditions for reintroduction to enlarge the effective population size.  相似文献   

11.
Dispersal is crucial for gene flow and often determines the long‐term stability of meta‐populations, particularly in rare species with specialized life cycles. Such species are often foci of conservation efforts because they suffer disproportionally from degradation and fragmentation of their habitat. However, detailed knowledge of effective gene flow through dispersal is often missing, so that conservation strategies have to be based on mark–recapture observations that are suspected to be poor predictors of long‐distance dispersal. These constraints have been especially severe in the study of butterfly populations, where microsatellite markers have been difficult to develop. We used eight microsatellite markers to analyse genetic population structure of the Large Blue butterfly Maculinea arion in Sweden. During recent decades, this species has become an icon of insect conservation after massive decline throughout Europe and extinction in Britain followed by reintroduction of a seed population from the Swedish island of Öland. We find that populations are highly structured genetically, but that gene flow occurs over distances 15 times longer than the maximum distance recorded from mark–recapture studies, which can only be explained by maximum dispersal distances at least twice as large as previously accepted. However, we also find evidence that gaps between sites with suitable habitat exceeding ~20 km induce genetic erosion that can be detected from bottleneck analyses. Although further work is needed, our results suggest that M. arion can maintain fully functional metapopulations when they consist of optimal habitat patches that are no further apart than ~10 km.  相似文献   

12.
The soil seed bank represents the potential plant population since it is the source for population replacement. The genetic structure of a Stipa kryiovii (Roshev.) plant population and its soil seed bank was investigated in the Xilinguole Steppe of Inner Mongolia using random amplified polymorphic DNA (RAPD) analyses. The population was sampled at two sites that were in close proximity to each other (0.5 km apart). Thirty plants and 18 seed bank samples were taken from each site to determine the genetic diversity between sites and between sources (plant or seed). The material was analyzed using 13 primers to produce 92 loci. Eighty-six were multi-loci, of which 23 loci (26.74%) of allele frequencies showed significant differences (P ≤ 0.05). The genetic similarity between two seed bank sites was 0.9843 while the genetic similarity between two plant sites was 0.9619. Their similarities were all greater than that between the seed bank and plant populations. An analysis of their genetic structure showed that 87.86% of total variation was derived by two-loci. Genetic structures between plant and soil seed bank populations in S. krylovii were different due to the variance of mean gametic disequilibria and mean gene diversity. AMOVA results showed that the majority of variance (88.62%) occurred within sites, 12.75% was from between-groups. Further research is needed to investigate the selective function in maintaining the genetic diversity of Stipa krylovii plant populations.  相似文献   

13.
For restoration purposes, nature conservation generally enforces the use of local seed material based on the “local‐is‐best” (LIB) approach. However, in some cases recommendations to refrain from this approach have been made. Here we test if a common widespread species with no obvious signs of local adaptation may be a candidate species for abandoning LIB during restoration. Using 10 microsatellite markers we compared population genetic patterns of the generalist species Daucus carota in indigenous and formerly restored sites (nonlocal seed provenances). Gene diversity overall ranged between He = 0.67 and 0.86 and showed no significant differences between the two groups. Hierarchical AMOVA and principal component analysis revealed very high genetic population admixture and negligible differentiation between indigenous and restored sites (FCT = 0.002). Moreover, differentiation between groups was caused by only one outlier population, where inbreeding effects are presumed. We therefore conclude that the introduction of nonlocal seed provenances in the course of landscape restoration did not jeopardize regional species persistence by contributing to inbreeding or outbreeding depressions, or any measurable adverse population genetic effect. On the basis of these results, we see no obvious objections to the current practice to use the 10‐fold cheaper, nonlocal seed material of D. carota for restoration projects.  相似文献   

14.
Studies on clonal plants indicate that the proportion between clonal and sexual reproduction can be variable, depending on local habitat conditions and the biological characteristics of the species. In the present study, we assessed this question in Trifolium alpestre by assaying genetic diversity and spatial genotypic structure of natural populations with the use of allozyme markers. Populations revealed high genetic diversity as well as strong spatial structure of multilocus genotypes. The values of genetic diversity were moderately high. Spatially aggregated, identical genotypes spread up to 15 m along linear transects and across 4‐m2 plots indicate extensive clonal propagation within populations. However, the existence of numerous unique and small‐sized clones reflects significant contribution from sexual reproduction. Spatially and temporarily stochastic soil disturbances have evidently opened new opportunities for the successful sexual recruitment from the permanent soil seed bank and thus counteracted losses of genetic and genotypic diversity. Seed production in all populations during the three study years was low, in average up to 1.5–2.4 seeds per shoot. The almost total lack of seed set for 57 bagged flower heads on genotypes grown in a common garden indicates that T. alpestre needs pollinators for seed production.  相似文献   

15.
土壤种子库作为地上植被遗传信息库,对植被自然演替更新以及生态修复建设具有重要作用。为探明桂北喀斯特石漠化地区植被自然恢复潜力和恢复策略,该文选取恭城瑶族自治县喀斯特石漠化地区3种典型植物群落为研究对象,分析不同群落的土壤种子库结构、多样性及其对土壤养分特征的响应,以期为该地区石漠化治理和植被恢复提供理论依据。结果表明:(1)共计监测到幼苗3 648株,隶属于33科51属55种,其中1年生和2年生草本幼苗共20种,多年生草本幼苗21种,藤本幼苗5种、灌木幼苗3种、乔木幼苗6种;不同植物群落土壤种子库平均密度为三华李经济林(22 493 grain·m-2)>青冈次生林(1 033 grain·m-2)>金竹灌丛(793 grain·m-2)。(2)土壤种子库植物生活型方面,三华李经济林主要分布1年生恶性杂草,青冈次生林和金竹灌丛则以多年生草本为主,木本植物占比较少;不同植被类型中土壤种子库物种多样性和相似性总体较低,同时与地上群落物种组成的相似性也较低。(3)研究区域的土壤元素存在高氮低磷的现象,其中磷元素为金...  相似文献   

16.
Genetic Diversity and the Reintroduction of Meadow Species   总被引:2,自引:0,他引:2  
Abstract: Restoration of formerly nutrient‐poor and species‐rich grasslands generally leads to an increase in species diversity. However, species without a persistent seed bank and with poor dispersal ability often do not re‐establish spontaneously. Here, reintroduction is an option. If existing populations are comparable in their genetic composition, any population will do. This is not the case if populations have local adaptations. Unfortunately, whether populations are adapted locally is not easily determined, in contrast to assessing differentiation using neutral genetic markers. We used AFLP to study genetic diversity of Cirsium dissectum and Succisa pratensis within and among several Junco‐Molinion plant communities in the Netherlands (up to 200 km apart) that were potential source populations, and followed the reintroduction using seeds from these populations. Also, vegetative growth phase characteristics of three populations of C. dissectum were analyzed under controlled conditions. Most of the genetic variation in these cross‐fertilizing species was found within populations. Small but significant genetic differences in band frequencies were found among populations (Fst 0.100 ‐ 0.135). The first generation of reintroduced plants contained less polymorphic bands than the source populations. The genetic differences caused by reintroduction using a limited number of seeds (founder effects) were significant in all except one case (Fst 0.012 ‐ 0.101 between source and corresponding reintroduced population), but the magnitude was smaller than the source population differentiation. In assignment tests, reintroduced populations resembled their source population more than any other population, but all populations contained sizeable proportions of plants that were assigned to most similar plants from other populations, indicating that the populations are only marginally distinct. Calculations show that reintroduction from more than one source population introduces significantly more polymorphic bands into the new population, capitalizing on the existence of band frequency differences among populations.  相似文献   

17.
We studied the influence of the root-crown weevil Ceutorhynchus scrobicollis on its host plant Alliaria petiolata, a European biennial herb that is currently invading much of temperate North America. Varying timing of attack and herbivore densities in a common garden allowed to assess seasonality of plant response, density-dependence of impact, and the effect of intraspecific competition on C. scrobicollis recruitment (number of F1 generation adults emerged). Data collected in the common garden were compared with data collected at field sites. C. scrobicollis is a common weevil in Europe, frequently attaining high attack levels on its host plant. In the common garden, weevil attack decreased plant survival by up to 43%, reduced plant height by 54%, increased the number of shoots by up to four–fold and delayed seed ripening, but had no significant negative effect on seed production. Plants infested in spring allocated less biomass to aboveground plant parts, and remained smaller than plants attacked in autumn, indicating that the latter were able to partly compensate for weevil attack. Increasing weevil density rarely had an effect on A. petiolata performance, and did not increase F1 recruitment, suggesting strong intraspecific competition. At field sites, C. scrobicollis attack is spread over a long time period, which probably alleviates intraspecific competition. In summary, attack by the root-crown feeding weevil, C. scrobicollis, can substantially reduce growth and survival of A. petiolata. If introduced as a biological control agent into North America, C. scrobicollis is likely to decrease the fitness and competitive superiority of A. petiolata.  相似文献   

18.
19.
20.
Plants of the genus Caragana (Fabaceae) are dominant shrub species of high ecological and economic importance on the Ordos Plateau in China. Due to natural environmental variability and anthropogenic impacts, Caragana pastures have experienced severe degradation, which has decreased their carrying capacity. In this study, we investigated the genetic diversity of eight Caragana species (C. purdomii, C. opulens, C. stenophylla, C. intermedia, C. korshinskii, C. roborovskyi, C. tibetica and C. brachypoda) on the Ordos Plateau by using ISSR markers. The results reveal high genetic diversity of all the species, with the percentage of polymorphic bands (PPB) reaching 100%. However, interspecific differences in genetic diversity within the genus were significant, as indicated by higher levels of genetic diversity of C. stenophylla, C. tibetica, C. intermedia, C. korshinskii and C. roborovskyi (PPB > 86%) when compared to the C. brachypoda with the lowest genetic diversity (PPB = 42.86%). Caragana brachypoda showed the lowest genetic similarity with and largest genetic distance from other taxa of the genus. Caragana tibetica had higher genetic diversity than C. roborovskyi. A large genetic distance was found between C. roborovskyi and C. tibetica, although the two species belong to Ser. Tragacanthoides and grow in a semidesert area. Such differences in genetic structure may be the reason for large areas occupied by C. tibetica, whereas C. roborovsky has rather limited distribution in the semidesert area. Caragana intermedia had high genetic diversity and a large genetic differentiation between intraspecific populations implying strong adaptability of the species to environmental fluctuations and selection capabilities. There was an obvious gene flow between C. intermedia and C. korshinskii, suggesting possible hybridization between these species is consistent with ecological variability, which may be important characteristics of Caragana plants in terms of molecular variation in the ecotone of Ordos plateau. Our results provide a molecular basis for sustainable management, utilization and conservation of Caragana plants on the Ordos plateau.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号