首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Aim We test the similarity–distance decay hypothesis on a marine host–parasite system, inferring the relationships from abundance data gathered at the lowest scale of parasite community organization (i.e. that of the individual host). Location Twenty‐two seasonal samples of the bogue Boops boops (Teleostei: Sparidae) were collected at seven localities along a coastal positional gradient from the northern North‐East Atlantic to the northern Mediterranean coast of Spain. Methods We used our own, taxonomically consistent, data on parasite communities. The variations in parasite composition and structure with geographical and regional distance were examined at two spatial scales, namely local parasite faunas and component communities, using both presence–absence (neighbour joining distance) and abundance (Mahalanobis distance) data. The influence of geographical and regional distance on faunal/community divergence was assessed through the permutation of distance matrices. Results Our results revealed that: (1) geographical and regional distances do not affect the species composition in the system under study at the higher scales; (2) geographical distance between localities contributes significantly to the decay of similarity estimated from parasite abundance at the lowest scale (i.e. the individual host); (3) the structured spatial patterns are consistent in time but not across seasons; and (4) a restricted clade of species (the ‘core’ species of the bogue parasite fauna) contributes substantially to the observed patterns of both community homogenization and differentiation owing to the strong relationship between local abundance and regional distribution of species. Main conclusions The main factors that tend to homogenize the composition of parasite communities of bogue at higher regional scales are related to the dispersal of parasite colonizers across host populations, which we denote as horizontal neighbourhood colonization. In contrast, the spatial structure detectable in quantitative comparisons only, is related to a vertical neighbourhood colonization associated with larval dispersal on a local level. The stronger decline with distance in the spatial synchrony of the assemblages of the ‘core’ species indicates a close‐echoing environmental synchrony that declines with distance. Our results emphasize the importance of the parasite supracommunity (i.e. parasites that exploit all hosts in the ecosystem) to the decay of similarity with distance.  相似文献   

2.
The similarity of parasite communities often decays with increasing geographic distance. Here, geographic distance decay is evaluated in parasite communities of 145 ring‐billed gulls from six localities in Quebec, Canada, among both individual gulls and gull populations. Spatial decay in similarity is compared to temporal decay, using host age differences as a distance measure. The similarity of parasite communities of individual gulls from localities spanning 300 km within Quebec is more strongly associated with host age differences than with geographic distance. Among gull populations in Quebec, only geographic distance is significantly related to parasite community similarity. The explanatory power of geographic distance is higher still when data from Quebec are combined with those from a study conducted 3000 km away, indicating an effect of spatial scale on geographic distance decay. The rate at which parasite community similarity decays with distance in gulls is compared with that of 17 other host species using data from published studies. Spatial scale explains two thirds of the variance in distance decay rates, and some of the remaining variance is explained by latitude. The rate of decay in parasite community similarity with distance is greater in larger scale studies and further away from the equator. Traits of host species traits such as vagility, body weight and trophic level have little or no effect on distance decay rates.  相似文献   

3.
Nested species subsets are a common pattern in many types of communities found in insular or fragmented habitats. Nestedness occurs in some communities of ectoparasites of fish, as does the exact opposite departure from random assembly, anti-nestedness. Here, we looked for nested and anti-nested patterns in the species composition of communities of internal parasites of 23 fish populations from two localities in Finland. We also compared various community parameters of nested and anti-nested assemblages of parasites, and determined whether nestedness may result simply from a size-related accumulation of parasite species by feeding fish hosts. Nested parasite communities were characterised by higher prevalence (proportion of infected fish) and intensities of infection (number of parasites per fish) than anti-nested communities; the two types of non-random communities did not differ with respect to parasite species richness, however. In addition, the correlation between fish size and the number of parasite species harboured by individual fish was much stronger in nested assemblages than in anti-nested ones, where it was often nil. These results were shown not to be artefacts of sampling effort or host phylogeny. They apply to both assemblages of adult and larval parasites, which were treated separately. Since species of larval parasites are extremely unlikely to interact with one another in fish hosts, the establishment of nestedness appears independent of the potential action of interspecific interactions. The species composition of these parasite communities is not determined from within the community, but rather by the extrinsic influence of host feeding rates and how they amplify differences among parasite species in probabilities of colonisation or extinction. Nested patterns occur in parasite communities whose fish hosts accumulate parasites in a predictable fashion proportional to their size, whereas anti-nested communities occur in parasite communities whose fish hosts do not, possibly because of dietary specialisation preventing them from sampling the entire pool of parasite species available locally. Thus, nestedness in parasite communities may result from processes somewhat different from those generating nested patterns in free-living communities.  相似文献   

4.
Increasing community dissimilarity across geographic distance has been described for a wide variety of organisms and understanding its underlying causes is key to understanding mechanisms driving patterns of biodiversity. Both niche‐based and neutral processes may produce a distance decay relationship; however, disentangling their relative influence requires simultaneous examination of multiple potential drivers. Parasites represent a unique opportunity in which to study distance decay because community dissimilarity may depend on environmental requirements and dispersal capability of parasites as well also those of their hosts. We used big brown bats Eptesicus fuscus and their intestinal helminths to investigate: 1) independent contributions of geographic and environmental distances on dissimilarity of intestinal helminth component communities between populations of big brown bats; 2) which environmental variables best explained variation in community dissimilarity; and 3) whether similar patterns of decay with geographic or environmental distance were observed for within‐host population and within‐individual host parasite communities. We used compositional measures of community dissimilarity to examine how parasite communities may change with geographic distance and varying environmental conditions. Non‐spatial variables strongly influenced compositional parasite community dissimilarity over multiple community scales, and we observed little evidence for spatial processes such as distance decay. Environment surrounding roost sites better predicted helminth community dissimilarity than any other class of variables and landcover classes representing anthropogenic modification consistently explained variation in community structure. Our results indicate that human disturbance drives significant patterns of parasite community dissimilarity, most likely by changing the presence or abundance of intermediate hosts in an area.  相似文献   

5.
We explored the relationships between features of host species and their environment, and the diversity, composition and structure of parasite faunas and communities using a large taxonomically consistent dataset of host-parasite associations and host-prey associations, and original environmental and host trait data (diet, trophic level, population density and habitat depth vagility) for the most abundant demersal fish species off the Catalonian coast of the Western Mediterranean. Altogether 98 species/taxa belonging to seven major parasite groups were recovered in 683 fish belonging to 10 species from seven families and four orders. Our analyses revealed that (i) the parasite fauna of the region is rich and dominated by digeneans; (ii) the host parasite faunas and communities exhibited wide variations in richness, abundance and similarity due to a strong phylogenetic component; (iii) the levels of host sharing were low and involved host generalists and larval parasites; (iv) the multivariate similarity pattern of prey samples showed significant associations with hosts and host trophic guilds; (v) prey compositional similarity was not associated with the similarity of trophically transmitted parasite assemblages; and (vi) phylogeny and fish autecological traits were the best predictors of parasite community metrics in the host-parasite system studied.  相似文献   

6.
We compared the haemosporidian parasite faunas (Plasmodium and Haemoproteus) of small land birds on the islands of St Lucia, St Vincent and Grenada in the southern Lesser Antilles. The islands differ in distance from the South American source of colonists, proximity to each other, and similarity of their avifaunas. On each island, we obtained 419–572 blood samples from 22–25 of the 34–41 resident species. We detected parasite infection by PCR and identified parasite lineages by sequencing a portion of the mitochondrial cytochrome b gene. Parasite prevalence varied from 31% on St Lucia to 22% on St Vincent and 18% on Grenada. Abundant parasite lineages differed between the three islands in spite of the similarity in host species. As in other studies, the geographic distributions of the individual parasite lineages varied widely between local endemism and broad distribution within the West Indies, including cases of long‐distance disjunction. St Vincent was unusual in the near absence of Plasmodium parasites, which accorded with low numbers of suitable mosquito vectors reported from the island. Parasites on St Vincent also tended to be host specialists compared to those on St Lucia and Grenada. Similarity in parasite assemblages among the three islands varied in parallel with host assemblage similarity (but not similarity of infected hosts) and with geographic proximity. Parasite prevalence increased with host abundance on both St Lucia and St Vincent, but not on Grenada; prevalence did not vary between endemic and more widespread host species. In addition, the endemic host species harbored parasites that were recovered from a variety of non‐endemic species as well. These results support the individualistic nature of haemosporidian parasite assemblages in evolutionarily independent host populations.  相似文献   

7.
An unappreciated facet of biodiversity is that rich communities and high abundance may foster parasitism. For parasites that sequentially use different host species throughout complex life cycles, parasite diversity and abundance in 'downstream' hosts should logically increase with the diversity and abundance of 'upstream' hosts (which carry the preceding stages of parasites). Surprisingly, this logical assumption has little empirical support, especially regarding metazoan parasites. Few studies have attempted direct tests of this idea and most have lacked the appropriate scale of investigation. In two different studies, we used time-lapse videography to quantify birds at fine spatial scales, and then related bird communities to larval trematode communities in snail populations sampled at the same small spatial scales. Species richness, species heterogeneity and abundance of final host birds were positively correlated with species richness, species heterogeneity and abundance of trematodes in host snails. Such community-level interactions have rarely been demonstrated and have implications for community theory, epidemiological theory and ecosystem management.  相似文献   

8.
Understanding what processes drive community structure is fundamental to ecology. Many wild animals are simultaneously infected by multiple parasite species, so host–parasite communities can be valuable tools for investigating connections between community structures at multiple scales, as each host can be considered a replicate parasite community. Like free‐living communities, within‐host–parasite communities are hierarchical; ecological interactions between hosts and parasites can occur at multiple scales (e.g., host community, host population, parasite community within the host), therefore, both extrinsic and intrinsic processes can determine parasite community structure. We combine analyses of community structure and assembly at both the host population and individual scales using extensive datasets on wild wood mice (Apodemus sylvaticus) and their parasite community. An analysis of parasite community nestedness at the host population scale provided predictions about the order of infection at the individual scale, which were then tested using parasite community assembly data from individual hosts from the same populations. Nestedness analyses revealed parasite communities were significantly more structured than random. However, observed nestedness did not differ from null models in which parasite species abundance was kept constant. We did not find consistency between observed community structure at the host population scale and within‐host order of infection. Multi‐state Markov models of parasite community assembly showed that a host's likelihood of infection with one parasite did not consistently follow previous infection by a different parasite species, suggesting there is not a deterministic order of infection among the species we investigated in wild wood mice. Our results demonstrate that patterns at one scale (i.e., host population) do not reliably predict processes at another scale (i.e., individual host), and that neutral or stochastic processes may be driving the patterns of nestedness observed in these communities. We suggest that experimental approaches that manipulate parasite communities are needed to better link processes at multiple ecological scales.  相似文献   

9.
Haemosporidian parasites of birds are ubiquitous in terrestrial ecosystems, but their coevolutionary dynamics remain poorly understood. If species turnover in parasites occurs at a finer scale than turnover in hosts, widespread hosts would encounter diverse parasites, potentially diversifying as a result. Previous studies have shown that some wide-ranging hosts encounter varied haemosporidian communities throughout their range, and vice-versa. More surveys are needed to elucidate mechanisms that underpin spatial patterns of diversity in this complex multi-host multi-parasite system. We sought to understand how and why a community of avian haemosporidian parasites varies in abundance and composition across elevational transects in eight sky islands in southwestern North America. We tested whether bird community composition, environment, or geographic distance explain haemosporidian parasite species turnover in a widespread host that harbors a diverse haemosporidian community, the Audubon’s Warbler (Setophaga auduboni). We tested predictors of infection using generalized linear models, and predictors of bird and parasite community dissimilarity using generalized dissimilarity modeling. Predictors of infection differed by parasite genus: Parahaemoproteus was predicted by elevation and climate, Leucocytozoon varied idiosyncratically among mountains, and Plasmodium was unpredictable, but rare. Parasite turnover was nearly three-fold higher than bird turnover and was predicted by elevation, climate, and bird community composition, but not geographic distance. Haemosporidian communities vary strikingly at fine spatial scales (hundreds of kilometers), across which the bird community varies only subtly. The finer scale of turnover among parasites implies that their ranges may be smaller than those of their hosts. Avian host species should encounter different parasite species in different parts of their ranges, resulting in spatially varying selection on host immune systems. The fact that parasite turnover was predicted by bird turnover, even when considering environmental characteristics, implies that host species or their phylogenetic history plays a role in determining which parasite species will be present in a community.  相似文献   

10.
The spatial distribution of 6 parasite species (Myxobolus sp., Dactylogyrus sp., Sterliadochona ephemeridarum, Plagioporus sinitsini, Allopodocotyle chiliticorum, Allocreadium lucyae) was studied in 5 species of fishes (Oncorhynchus mykiss, Clinostomus funduloides, Notropis chiliticus, Rhinichthys atratulus, Semotilus atromaculatus) in Basin Creek, an Appalachian stream in North Carolina. Nonmetric multidimensional scaling and vector fitting were used to determine if the proximity of sampling sites was related to community similarity. Position along Basin Creek was significantly related to parasite community structure. Breaks in parasite community composition were imposed by waterfalls at upstream areas of Basin Creek that restricted distributions of C. funduloides, N. chiliticus, and S. atromaculatus and at the downstream limit of the study area by a break in the distribution of S. ephemeridarum coincident with the existence of a dam but were independent of suitable piscine host distributions. These discontinuities in parasite community composition imply that the relationship between proximity of sites and community similarity is predictive because distance between sites is related to the probability that fish at different sampling sites recruit parasites from different species pools. This relationship is not the same for all component communities.  相似文献   

11.
Aim The similarity between parasite assemblages should decrease with increasing geographic distance between them, increasing dissimilarity in environmental conditions, and/or increasing dissimilarity of the local host fauna, depending on the dispersal abilities of the parasites and the intimacy of their associations with the host. We tested for a decay in the similarity of gamasid mite assemblages parasitic on small mammals with increasing geographic, ‘environmental’ and ‘host faunal’ (= ‘host’) distances. Location We used data on assemblages of haematophagous gamasid mites (superfamily Dermanyssoidea) parasitic on small mammals (Insectivora, Lagomorpha and Rodentia) from 26 different regions of the northern Palaearctic. Methods Similarity in mite assemblages was investigated at the compound community level across all regions, and at the component community level, across populations of the same host species for each of 11 common host species. Similarity between pairs of mite communities was estimated using both the Jaccard and the Sorensen indices. Environmental distance was estimated as the dissimilarity between locations in a composite measure of climatic variables, and host faunal distance was simply taken as the reciprocal of indices of similarity between the composition of host faunas in different locations. Generalized Linear Models (GLM) and Akaike's Information Criterion were used to select the best model of decay in similarity as a function of geographic, ‘environmental’ and ‘host faunal’ distances. Results Overall, despite slight differences among host species, the similarity in mite assemblages decreased with both increasing ‘environmental’ distance and increasing ‘host faunal’ distance, but was generally unaffected by geographic distance between regions. The similarity of component communities of gamasid mites among host populations was determined mainly by similarity in the physical environment, whereas that of compound communities varied mainly with host‐species composition. Main conclusions Our results indicate that the general decay in community similarity with increasing geographic distances does not apply to assemblages of gamasid mites; it is possible that they can overcome great distances by means of passive dispersal (either by phoresy or wind‐borne), or more likely they occur wherever their hosts are found as a result of tight cospeciation in the past. Mite assemblages on small mammalian hosts seem to be affected mainly by local environmental conditions, and, to a much lesser extent, by the species composition of local host communities.  相似文献   

12.

Aim

Identifying barriers that govern parasite community assembly and parasite invasion risk is critical to understand how shifting host ranges impact disease emergence. We studied regional variation in the phylogenetic compositions of bird species and their blood parasites (Plasmodium and Haemoproteus spp.) to identify barriers that shape parasite community assembly.

Location

Australasia and Oceania.

Methods

We used a data set of parasite infections from >10,000 host individuals sampled across 29 bioregions. Hierarchical models and matrix regressions were used to assess the relative influences of interspecies (host community connectivity and local phylogenetic distinctiveness), climate and geographic barriers on parasite local distinctiveness and composition.

Results

Parasites were more locally distinct (co‐occurred with distantly related parasites) when infecting locally distinct hosts, but less distinct (co‐occurred with closely related parasites) in areas with increased host diversity and community connectivity (a proxy for parasite dispersal potential). Turnover and the phylogenetic symmetry of parasite communities were jointly driven by host turnover, climate similarity and geographic distance.

Main conclusions

Interspecies barriers linked to host phylogeny and dispersal shape parasite assembly, perhaps by limiting parasite establishment or local diversification. Infecting hosts that co‐occur with few related species decreases a parasite's likelihood of encountering related competitors, perhaps increasing invasion potential but decreasing diversification opportunity. While climate partially constrains parasite distributions, future host range expansions that spread distinct parasites and diminish barriers to host shifting will likely be key drivers of parasite invasions.  相似文献   

13.
《Biotropica》2017,49(2):229-238
Estimates of biodiversity and its global patterns are affected by parasite richness and specificity. Despite this, parasite communities are largely neglected in biodiversity estimates, especially in the tropics. We studied the parasites of annual killifish of the genus Nothobranchius that inhabit annually desiccating pools across the African savannah and survive the dry period as developmentally arrested embryos. Their discontinuous, non‐overlapping generations make them a unique organism in which to study natural parasite fauna. We investigated the relationship between global (climate and altitude) and local (pool size, vegetation, host density and diversity, and diversity of potential intermediate hosts) environmental factors and the community structure of killifish parasites. We examined metazoan parasites from 21 populations of four host species (Nothobranchius orthonotus, N. furzeri, N. kadleci, and N. pienaari) across a gradient of aridity in Mozambique. Seventeen parasite taxa were recorded, with trematode larval stages (metacercariae) being the most abundant taxa. The parasites recorded were both allogenic (life cycle includes non‐aquatic host; predominantly trematodes) and autogenic (cycling only in aquatic hosts; nematodes). The parasite abundance was highest in climatic regions with intermediate aridity, while parasite diversity was associated with local environmental characteristics and positively correlated with fish species diversity and the amount of aquatic vegetation. Our results suggest that parasite communities of sympatric Nothobranchius species are similar and dominated by the larval stages of generalist parasites. Therefore, Nothobranchius serve as important intermediate or paratenic hosts of parasites, with piscivorous birds and predatory fish being their most likely definitive hosts.  相似文献   

14.
Patterns of distance decay in similarity among communities of the fish Pinguipes brasilianus (Teleostei: Pinguipedidae) from five areas in the southwestern Atlantic were investigated to determine whether the rate of decay varied depending on the community level or the parasite guild analyzed (ectoparasites, adult endoparasites and larval endoparasites). Similarities in species composition were computed at both the component community and infracommunity levels. Similarity indices were calculated between all possible pairs of assemblages from different zones. Infracommunity similarity values between and within host populations were averaged. Significance of linear regressions for similarity values against distance was assessed using randomization tests. Different patterns were observed for each guild, and similarity among infracommunities within host populations varied accordingly. Decay in similarity over distance was recorded for most communities. The slopes differed significantly between infracommunities and component communities in all cases, and stronger decay was always observed for infracommunities. Different geographical patterns in parasite communities were a consequence of variability in parasite availability in the different regions, modulated by oceanographic conditions, as well as variation among species in terms of host specificity and life-cycles strategies. Infracommunities showed a stronger effect of distance than component communities, probably due to the influence of short term and local variability of oceanographic conditions.  相似文献   

15.
Aim The rate at which similarity in species composition decays with increasing distance was investigated among communities of parasitic helminths in different populations of the same host species. Rates of distance decay in similarity of parasite communities were compared between populations of fish and mammal hosts, which differ with respect to their vagility and potential to disperse parasite species over large distances. Location Data on helminth communities were compiled for several populations of three mammalian host species (Ondatra zibethicus, Procyon lotor and Canis latrans) and three fish host species (Perca flavescens, Catostomus commersoni and Esox lucius) from continental North America. Methods Distances between localities and similarity in the composition of helminth communities, the latter computed using the Jaccard index, were calculated for all possible pairs of host populations within each host species. Similarity values were then regressed against distance to see if they decayed at exponential rates, as reported for plant communities; the significance of the regressions was assessed using randomization tests. Results The number of hosts examined per population did not correlate with the number of helminth species found per population, and thus sampling effort is unlikely to have confounded the results. In four (two mammals and two fish) of the six host species, similarity in helminth communities decayed exponentially with distance. When the log of similarity is plotted against untransformed distance, the slopes obtained for the two fish species are lower than those obtained for the two mammalian host species. Main conclusions Similarity in the composition of parasite communities appears to decay exponentially with increasing distance in some host species, but not in all host species. The rate of decay is not necessarily associated with the vagility of the host. Although distance decay of similarity is generally occurring, it seems that other ecological processes, related either to the host or its habitat, can obscure it.  相似文献   

16.
Aim (1) To describe the species–area relationships among communities of Plasmodium and Haemoproteus parasites in different island populations of the same host genus (Aves: Zosterops). (2) To compare distance–decay relationships (turnover) between parasite communities and those with potential avian and dipteran hosts, which differ with respect to their movement and potential to disperse parasite species over large distances. Location Two archipelagos in the south‐west Pacific, Vanuatu and New Caledonia (c. 250 km west of Vanuatu) and its Loyalty Islands, with samples collected from a total of 16 islands of varying sizes (328–16,648 km2). Methods We characterized parasite diversity and distribution via polymerase chain reaction (PCR) from avian (Zosterops) blood samples. Bayesian methods were used to reconstruct the parasite phylogeny. In accordance with recent molecular evidence, we treat distinct mitochondrial DNA lineages as equivalent to species in this study. Path analysis and parasite lineage accumulation curves were used to assess the confounding effect of inadequate sampling on the estimation of parasite richness. Species–area and species–distance relationships were assessed using linear regression: distance–decay relationships were assessed using Mantel tests. Results Birds and mosquito species and Plasmodium lineages exhibited significant species–area relationships. However, Plasmodium lineages showed the weakest ‘species–area’ relationship; no relationship was found for Haemoproteus lineages. Avian species richness influenced parasite lineage richness more than mosquito species richness did. Within individual avian host species, the species–area relationship of parasites showed differing patterns. Path analysis indicated that sampling effort was unlikely to have a confounding effect on parasite richness. Distance from mainland (isolation effect) showed no effect on parasite richness. Community similarity decayed significantly with distance for avifauna, mosquito fauna and Plasmodium lineages but not for Haemoproteus lineages. Main conclusions Plasmodium lineages and mosquito species fit the power‐law model with steeper slopes than found for the avian hosts. The lack of species–distance relationship in parasites suggests that other factors, such as the competence of specific vectors and habitat features, may be more important than distance. The decay in similarity with distance suggests that the sampled Plasmodium lineages and their potential hosts were not randomly distributed, but rather exhibited spatially predictable patterns. We discuss these results in the context of the effects that parasite generality may have on distribution patterns.  相似文献   

17.
The community of host species that a parasite infects is often explained by functional traits and phylogeny, predicting that closely related hosts or those with particular traits share more parasites with other hosts. Previous research has examined parasite community similarity by regressing pairwise parasite community dissimilarity between two host species against host phylogenetic distance. However, pairwise approaches cannot target specific host species responsible for disproportionate levels of parasite sharing. To better identify why some host species contribute differentially to parasite diversity patterns, we represent parasite sharing using ecological networks consisting of host species connected by instances of shared parasitism. These networks can help identify host species and traits associated with high levels of parasite sharing that may subsequently identify important hosts for parasite maintenance and transmission within communities. We used global‐scale parasite sharing networks of ungulates, carnivores, and primates to determine if host importance – encapsulated by the network measures degree, closeness, betweenness, and eigenvector centrality – was predictable based on host traits. Our findings suggest that host centrality in parasite sharing networks is a function of host population density and range size, with range size reflecting both species geographic range and the home range of those species. In the full network, host taxonomic family became an important predictor of centrality, suggesting a role for evolutionary relationships between host and parasite species. More broadly, these findings show that trait data predict key properties of ecological networks, thus highlighting a role for species traits in understanding network assembly, stability, and structure.  相似文献   

18.
Almost all macroparasites show over‐dispersed infections within natural host populations such that most parasites are distributed among a few heavily‐infected individuals. Despite the importance of parasite aggregation for understanding system stability, the potential for population regulation, and super‐spreading events, many questions persist about its underlying drivers. Theoretically, aggregation results from heterogeneity in host exposure, resistance, and tolerance. However, few studies have examined how host spatial arrangement – which likely affects both parasite encounter and density‐dependent interactions – influences infection and dispersion, representing a critical gap in our current knowledge regarding the possible drivers of parasite aggregation. Using field data from over 165 ponds and 8000 hosts, we evaluated how the spatial clustering of amphibian larvae within ponds 1) varied among different amphibian species, and 2), affected the distribution of parasites within the host population using Taylor's power law. A complementary mesocosm experiment used field‐guided manipulations of the spatial arrangement of larval amphibians to create a gradient in host clustering while controlling host density, thereby testing for spatial effects on both infection success and aggregation by three different trematode species. Our field data indicated that larval amphibians exhibited significant spatial clustering that was well captured by Taylor's power law (R2 0.92 to 0.97 for different host species), but the residual variation only weakly correlated with observed patterns of trematode parasite over‐dispersion. Correspondingly, experimental manipulation of host clustering had no effects on parasite infection success or the degree of parasite aggregation among cages or mesocosms. Given the importance of parasite over‐dispersion for host populations and disease dynamics, we advocate for further investigations of host and parasite spatial aggregation, particularly studies that incorporate and/or control for heterogeneity in exposure and susceptibility.  相似文献   

19.
Host movements, including migrations or range expansions, are known to influence parasite communities. Transitions to captivity—a rarely studied yet widespread human‐driven host movement—can also change parasite communities, in some cases leading to pathogen spillover among wildlife species, or between wildlife and human hosts. We compared parasite species richness between wild and captive populations of 22 primate species, including macro‐ (helminths and arthropods) and micro‐parasites (viruses, protozoa, bacteria, and fungi). We predicted that captive primates would have only a subset of their native parasite community, and would possess fewer parasites with complex life cycles requiring intermediate hosts or vectors. We further predicted that captive primates would have parasites transmitted by close contact and environmentally—including those shared with humans and other animals, such as commensals and pests. We found that the composition of primate parasite communities shifted in captive populations, especially because of turnover (parasites detected in captivity but not reported in the wild), but with some evidence of nestedness (holdovers from the wild). Because of the high degree of turnover, we found no significant difference in overall parasite richness between captive and wild primates. Vector‐borne parasites were less likely to be found in captivity, whereas parasites transmitted through either close or non‐close contact, including through fecal‐oral transmission, were more likely to be newly detected in captivity. These findings identify parasites that require monitoring in captivity and raise concerns about the introduction of novel parasites to potentially susceptible wildlife populations during reintroduction programs.  相似文献   

20.
The effect of geographical distance on similarity in parasite communities of freshwater fish has received considerable attention in recent years, and it has become evident that these apparently simple relationships are influenced by, among other things, colonization ability of parasites and degree of connectivity between the populations. In the present paper, we explored qualitative and quantitative similarity in the intestinal parasite communities of pike (Esox lucius) in a particular system where previously interconnected groups of lakes became isolated ca. 8,400 yr ago. Contrary to our expectations, we did not find differences in similarity between the lake groups or a negative effect of distance among the populations. This supports the role of common ancestral colonization events and shows that no significant loss of species has occurred during the past 8,000 yr. However, the communities were dominated by a single parasite species, the cestode Triaenophorus nodulosus. The exclusion of this species from the data had a significant negative impact on the community similarities and also revealed a negative relationship between distance and quantitative similarity. This suggests that patterns of community organization may be obscured by a single dominant species. We also highlight the need for further studies in different systems and host species, as well as detailed reanalysis of existing data sets, to unravel the controversy in the relationship between distance and similarity in parasite communities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号