首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Pullulan produced by Aureobasidium pullulans presents various applications in food manufacturing and pharmaceutical industry. However, the pullulan biosynthesis mechanism remains unclear. This work proposed a pathway suggesting that heavy oil and melanin may correlate with pullulan production. The effects of overexpression or deletion of genes encoding apolipoprotein, UDPG-pyrophosphorylase, glucosyltransferase, and α-phosphoglucose mutase on the production of pullulan, heavy oil, and melanin were examined. Pullulan production increased by 16.93 and 8.52% with the overexpression of UDPG-pyrophosphorylase and apolipoprotein genes, respectively. Nevertheless, the overexpression or deletion of other genes exerted little effect on pullulan biosynthesis. Heavy oil production increased by 146.30, 64.81, and 33.33% with the overexpression of UDPG-pyrophosphorylase, α-phosphoglucose mutase, and apolipoprotein genes, respectively. Furthermore, the syntheses of pullulan, heavy oil, and melanin can compete with one another. This work may provide new guidance to improve the production of pullulan, heavy oil, and melanin through genetic approach.  相似文献   

2.
Effects of different pH and carbon sources on pullulan production, UDP-glucose level and pullulan-related synthases activity inAureobasidium pullulans Y68 were examined. It was found that more pullulan was produced when the yeast strain was grown in the medium with initial pH 7.0 than when it was grown in the same medium with constant pH 6.0. The results also show that higher pullulan yield was obtained when the cells were grown in the medium containing glucose than when they were cultivated in the medium supplementing other carbon sources. Our results demonstrate that the more pullulan was synthesized, the less UDP-glucose was left in the cells ofA. pullulans Y68. However, it was observed that more pullulan was synthesized; the cells had higher pullulan-related synthase activity. Therefore, high pullulan yield was related to low UDP-glucose level and high pullulan-related synthases activity inAureobasidium pullulans Y68.  相似文献   

3.
Biofilm is a natural form of cell immobilization in which microorganisms attach onto solid support. In this study, a pigment-reduced pullulan-producing strain, Aureobasidium pullulans (ATCC 201253), was used for continuous pullulan fermentation in a plastic composite support (PCS) biofilm reactor. Optimal conditions for the continuous pullulan production were determined by evaluating the effects of the feeding medium with various concentrations of ammonium sulfate and sucrose and dilution rate. Pullulan concentration and production rate reached maximum (8.3 g/l and 1.33 g/l/h) when 15 g/l of sucrose, 0.9 g/l of ammonium sulfate, and 0.4 g/l of yeast extract were applied in the medium, and the dilution rate was at 0.16 h−1. The purity of produced pullulan was 93.0%. The ratio of hyphal cells of A. pullulans increased when it was grown on the PCS shaft. Overall, the increased pullulan productivity can be achieved through biomass retention by using PCS biofilm reactor.  相似文献   

4.
A strain Aureobasidium pullulans AP329, was used for the production of pullulan by employing hydrolysed sweet potato as cultivation media. Hydrolysis with α-amylase alone resulted in the lowest yields of pullulan. In contrast continuous hydrolysis with pullulanase and the β-amylase in sweet potato itself gave higher yields, but prolonged hydrolysis with amyloglucosidase decreased the yield. The maximum pullulan yield (29.43 g/l) was achieved at the dextrose equivalent value of 45 and pH of 5.5 for 96 h. As a substitute of sucrose, hydrolysed sweet potato was found to be hopeful and the yield of pullulan was higher than that of glucose and sucrose. The molecular weight of pullulan obtained from hydrolysed sweet potato media was much higher than that of sucrose and glucose media. Results of this work indicated that sweet potato was a promising substrate for the economical production of pullulan.  相似文献   

5.
Cross-flow filtration of culture broth from Aureobasidium pullulans, which elaborates pullulan, was done with a thin channel-type module and microfiltration membranes made of different materials and with different pore sizes. Various factors affecting the results of the filtration were studied. The specific resistance of the microbial cake was found to be higher than that of bakers yeast, the cells of which are about the same size as an A. pullulans cell, and resistance increased with cultivation time. The flux and transmission of pullulan through the membrane decreased with cultivation time as the specific resistance increased. The flux and transmission ] of pullulan depended on the structure and pore size of the membrane and also on the pH of the broth. With a polysulphone membrane with a nominal pore size of 2.0 m, transmission was nearly 100% with negligible leakage of cells and the flux was high when the pH of the broth was adjusted to 2.0.On leave from Hayashibara Co., Ltd., Amase-minamimachi, Okayama 700 Japan Correspondence to: K. Nakanishi  相似文献   

6.
Aureobasidium pullulans had a maximum yield coefficient of pullulan (Y p/s=0.24) with an initial pH of the culture broth of 6.5 in a shake-flask culture. In a batch culture, the maximum pullulan yield coefficient of 0.30 was obtained at the aeration rate of 0.5 vvm. A yeast-like form and mycelial form of cells were found at the culture broth with pH controlled at 4.5 with a maximum yield coefficient of pullulan of 0.27. However, a high portion (35%) of high molecular weight pullulan (M w>2 000 000) was produced at pH 6.5 with a yeast-like morphology of the cells.  相似文献   

7.
Summary Oxygen was essential for the biosynthesis of pullulan by Aureobasidium pullulans. In a growth medium, pullulan yield and synthesis rate were proportional to the oxygen availability. However, under controlled oxygen environment in a non-growth medium, the synthesis rate and the yield of pullulan were inversely proportional to the oxygen tension. A relationship between melanin production and oxygen transfer conditions was also observed. The elapsed time prior to the appearance of the pigment was dependent upon the degree of oxygen availability.  相似文献   

8.
pullulan, a water soluble extracellular polysaccharide, was produced by downstream fermentation employing the strain Aureobasidium pullulans. To obtain pure biopolymer from the fermentation broth, it is necessary to harvest cells, heat the broth, remove the melanin pigments co-produced during fermentation, concentration, precipitate and dry. Centrifugation of the fermentation broth at 10,000 rpm for 15 min gave cell pellets that were discarded and a green–black supernatant containing melanin pigment was subjected to the heat treatment at 80 °C for 20 min in order to remove the protein in the fermentation broth. The supernatant was demelanized by oxidation with hydrogen peroxide, concentrated under vacuum, precipitated with ethanol and dried at 60 °C for 30 min. This procedure produced high purity pullulan that was comparable in color and texture to the commercial samples.  相似文献   

9.
Based on intuitive analyses and statistical calculations using data from orthogonal array experiments, the optimal concentrations of K2HPO4, NaCl, MgSO4·7H2O, and (NH4)2SO4 in cell growth medium of Aureobasidium pullulans HP-2001 were measured as 7.5, 1.0, 0.1, and 2.4 g/L, respectively, whereas those for the production of pullulan were 2.5, 0.25, 0.8, and 0.3 g/L, respectively. The most important factor for cell growth and production of pullulan by A. pullulans HP-2001 was identified as K2HPO4. Optimal concentrations of glucose and yeast extract, along with the initial pH of the cell growth medium of A. pullulans HP-2001 containing optimized salt concentrations, were found to be 100.0, 10.0, and 6.0 g/L, respectively, whereas those for the production of pullulan were 100.0, 2.5, and 6.0 g/L, respectively. Conversion rates of pullulan from 10.0, 25.0, 50.0, 75.0, and 100.0 g/L of glucose in the presence of optimized salt concentrations were 26.0, 25.2, 22.4, 17.9, and 14.1%, respectively, whereas those in the presence of previously reported salt concentrations were 26.6, 25.2, 19.9, 14.3, and 11.7%, respectively. Optimal salt concentrations for the production of pullulan by A. pullulans HP-2001 varied according to the concentrations of the carbon and nitrogen sources, especially at higher concentrations.  相似文献   

10.
Summary Pullulan is a polysaccharide produced by Aureobasidium pullulans. In this study, the effect of pH on the molecular weight of pullulan was investigated. High concentration of pullulan was obtained when initial pH was 6. Pullulan having molecular weight of 500,000–600,000 was produced at initial pH of 3.0, while pullulan with molecular weight of 200,000–300,000 was produced at pH above 4.5. To obtain high molecular weight pullulan with high concentration, pH was initially controlled at pH 6, followed by pH shift from pH 6 to pH 3. Transition of pH at 2 days of fermentation was observed to be optimum. Higher molecular weight pullulan was also obtained when sucrose concentration was 50 g/l compared to the result obtained at initial sucrose concentration of 20 g/l. Sucrose concentration and pH of the fermentation broth seem to be important parameters in obtaining high molecular weight of pullulan.  相似文献   

11.
12.
Influence of impeller speed upon the pullulan fermentation   总被引:4,自引:0,他引:4  
Summary The effect of impeller speed on pullulan production and the morphology ofAureobasidium pullulans in batch culture was studied. Pullulan production and the percentage of yeast cells in the culture rose with impeller speed, as did molecular weight of the polysaccharide.  相似文献   

13.
A two-stage fermentation process was established for the production of pigment-free pullulan by the yeast-like fungus Aureobasidium pullulans (ATCC 42023). In the first stage, starting at pH 4.5 with soy bean oil as the carbon source and glutamate as the nitrogen source, a cell mass of about 15 g l–1 dry cell weight was obtained, the population being restricted mainly to the yeast form of the microorganism (yeast form more than 90% of total cells) and the formation of pigment in the culture being prevented. Small amounts of pullulan (less than 2 g l–1) are produced at this phase, and the viscosity remained low throughout the entire growth stage. When the oil and glutamate source were nearly exhausted (below 5% of initial amounts), the cells were shifted to a production stage with sucrose as the carbon source with continued nitrogen depletion. Production of pullulan started immediately with no lag period. During 50 h of the production phase more than 35 g l–1 of pullulan was produced (productivity approx. 0.7 g l–1), resulting in a large increase in the viscosity of the broth. The production yield of pollulan on the sugar was about 0.6 g g–1. Morphogenesis from the yeast form of the microorganism to chlamydospores was still restrained and no pigment was formed in the culture during the production stage. A pigment-free polysaccharide, with a molecular mass in the range of 600–750 kDa, was recovered from the supernatant of the broth after solvent precipitation.  相似文献   

14.
A black yeast strain “NG” was isolated from strawberry fruit and identified as Aureobasidium pullulans. Strain NG displayed yeast-like cell (YL), swollen cell (SC), septate swollen cell (SSC), meristematic structure (MS), and chlamydospore (CH) morphologies. pH was the key factor regulating cell morphogenesis of strain NG. Differentiation of YL controlled by extracellular pH had no relationship with nutrition level. YL was maintained at pH >6.0, but was transformed into SC at pH ∼4.5. SC, a stable cell type of A. pullulans, could bud, septate, or transform into MS or CH, in response to nutrition level and low pH. SC produced swollen cell blastospores (SCB) at pH 2.1 with abundant nutrition, and could transform into MS at lower pH (1.5). SC was induced to form CH by low level nutrition and pH <3, and this transition was suppressed by adjusting pH to ∼4.5. Crude polysaccharides without pigment (melanin) were produced by SC of strain NG. Pullulan content of the polysaccharides was very high (98.37%). Fourier-transform infrared spectroscopy confirmed that chemical structures of the polysaccharides and standard pullulan were identical. Swollen cells produced 2.08 mg/ml non-pigmented polysaccharides at 96 h in YPD medium. Controlling pH of fermentation is an effective and convenient method to harvest SC for melanin-free pullulan production.  相似文献   

15.
Pullulan is a linear homopolysaccharide which is composed of glucose units and often described as α-1, 6-linked maltotriose. The applications of pullulan range from usage as blood plasma substitutes to environmental pollution control agents. In this study, a biofilm reactor with plastic composite support (PCS) was evaluated for pullulan production using Aureobasidium pullulans. In test tube fermentations, PCS with soybean hulls, defatted soy bean flour, yeast extract, dried bovine red blood cells, and mineral salts was selected for biofilm reactor fermentation (due to its high nitrogen content, moderate nitrogen leaching rate, and high biomass attachment). Three pH profiles were later applied to evaluate their effects on pullulan production in a PCS biofilm reactor. The results demonstrated that when a constant pH at 5.0 was applied, the time course of pullulan production was advanced and the concentration of pullulan reached 32.9 g/L after 7-day cultivation, which is 1.8-fold higher than its respective suspension culture. The quality analysis demonstrated that the purity of produced pullulan was 95.8% and its viscosity was 2.4 centipoise. Fourier transform infrared spectroscopy spectra also supported the supposition that the produced exopolysaccharide was mostly pullulan. Overall, this study demonstrated that a biofilm reactor can be successfully implemented to enhance pullulan production and maintain its high purity.  相似文献   

16.
Summary Experiments were carried out withA. pullulans (ATCC 9348) at constant dissolved oxygen concentration (DO=100 and 50% related to air saturation at 1 bar) and at constant stirrer speeds (n=500 and 150 [min–1]). The highest pullulan yield was achieved at decreased constant DO in connection with decreased shear rate. Biomass production was not affected.  相似文献   

17.
Summary The feasibility of pressurized culture was explored for the growth of Aureobasidium pullulans and the synthesis of pullulan. For all volumetric flow rates of air, the production of biomass increased with pressure up to a critical value ranging from 0.50 to 0.75 MPa, at which point a drastic decrease in biomass production and a change in cellular morphology was observed. For pullulan synthesis, the same dramatic decrease was observed at approximately the same critical pressure. In the pressure range 0.1–0.65 MPa, the synthesis of pullulan was subject to what is believed to be the competing effects of oxygen availability and pressure inhibition.Offprint requests to: J. Thibault  相似文献   

18.
The effect of a two-stage cultivation temperature on the production of pullulan synthesized by Aureobasidium pullulans CGMCC1234 was investigated. Pullulan production was affected by temperature; although the optimum temperature for pullulan production was 26°C, the optimal temperature for cell growth was 32°C. Maximum pullulan production was achieved by growing A. pullulans in a first stage of 32°C for 2 days, and then in a second stage of 26°C for 2 days. Pullulan production using these two-stage temperatures significantly increased: about 27.80% (w/w) compared to constant-temperature fermentation (26°C for 4 days). The morphology of the A. pullulans (CGMCC 1234) was also affected by temperature; the lower temperature (26°C) supported unicellular biomass growth. Results of this study indicate that fermentation using two temperature stages is a promising method for pullulan production.  相似文献   

19.
It has been well documented that Aureobasidium pullulans is widely distributed in different environments. Different strains of A. pullulans can produce amylase, proteinase, lipase, cellulase, xylanase, mannanase, transferases, pullulan, siderophore, and single-cell protein, and the genes encoding proteinase, lipase, cellulase, xylanase, and siderophore have been cloned and characterized. Therefore, like Aspergillus spp., it is a biotechnologically important yeast that can be used in different fields. So it is very important to sequence the whole genomic DNA of the yeast cells in order to find new more bioproducts and novel genes from this yeast.  相似文献   

20.
A mutant strain of the deuteromycete Aureobasidium pullulans deficient in melanin synthesis was used to investigate the production of the exopolysaccharide pullulan and biomass, respectively. Shake-flask experiments with different carbon sources showed significant differences in pullulan elaboration. Sucrose was most suitable for pullulan synthesis among the carbon sources examined. Fermentations were carried out both batch-wise and continuously in a stirred vessel fermentator. In batch fermentations about 45% of the glucose offered was converted into pullulan at maximum formation rates of 0.16 g/l per hour using standard medium. The yield of polysaccharide could be maintained at 45% in continuous fermentations. At a dilution rate of 0.05 l/h, the formation rate of polysaccharide increased up to 0.35 g/l per hour. Alterations in the nitrogen content of the feed significantly affected the consumption rate of glucose and the production rate of polysaccharide, but final concentrations of biomass were hardly affected. Correspondence to: R. Schuster  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号