首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 66 毫秒
1.
鸟类数量变化和群落结构是监测区域内生态系统状态的重要指标。2017年6月、9月、12月和2018年3—4月,采用样线法、样点法、访问法对四川雪宝顶国家级自然保护区内的鸟类多样性进行了深入调查。野外调查共记录到鸟类17目54科208种7 451只,结合文献资料,共记录鸟类17目58科255种,其中,濒危保护物种共计42种,占总物种数的16.47%;从生境来看,阔叶林的鸟类多样性最高,针阔混交林的均匀度指数最高,阔叶林-针阔混交林的相似性指数最高;从季节来看,春季的多样性和均匀度指数均最高,春-夏的相似性指数最高;保护区目前面临着较多的周边居民生产生活干扰。为更好地保护区内的鸟类多样性,并降低人为干扰,建议加强鸟类的长期监测和社区生态教育宣传,同时开展社区共管,完善生态补偿机制。  相似文献   

2.
内蒙古包头南海子湿地鸟类群落组成及多样性   总被引:2,自引:1,他引:1  
为了解包头南海子湿地鸟类资源现状,2006年8月至2007年10月,对内蒙古包头市南海子自然保护区的鸟类物种多样性和群落结构进行了调查,共记录到鸟类128种,隶属于15目37科.其中,古北界鸟类110种,占调查区鸟类种数的85.94%.居留型主要以夏候鸟和旅鸟为主.根据鸟类栖息地的生境类型,将保护区的鸟类划分为4个群落.其中,浅水沼泽的鸟类数量最多,多样性指数、均匀度指数均最高.南海子自然保护区对包头市生态旅游产业以及自然保护教育具有重要意义.  相似文献   

3.
鄱阳湖流域非繁殖期鸟类多样性   总被引:8,自引:1,他引:7  
2010年11月-2011年3月,采用样线和样点法相结合,对鄱阳湖流域非繁殖期鸟类种类及数量进行了调查.共记录鸟类13目36科106种.其中,国家Ⅰ级重点保护鸟类1种,国家Ⅱ级重点保护鸟类10种.居留型方面,留鸟和冬候鸟最多,分别占鸟类物种总数的56.60%和35.85%.鸟类区系上,古北界种类最多,占41.51%;其次是东洋界鸟类,占32.08%.鸟类物种数1月份和3月份最多,多样性和均匀度指数均以12月份和3月份最高,以11月份和2月份最低.欧氏距离显示,修水段、龙虎山段和靖安段与其他河段的鸟类组成差异较大.宜黄段、耳口段和浮梁段的鸟类组成比较相近.研究结果表明,鸟类的相似度与各河段间隔的距离无关,而可能与当地的生境密切相关.鄱阳湖流域分布着一些濒危鸟类,然而人类活动如采砂、非法捕鱼等严重影响了这些鸟类的生存环境.因此建议降低人类活动强度,维持鄱阳湖流域鸟类多样性.  相似文献   

4.
2009年3~11月调查了双台河口自然保护区旅游区的鸟类,共记录到鸟类88种,隶属13日30科,其中水鸟44种.地理区系以占北界为主(占59%),居留类型以夏候鸟为主(占57.95%).群落数星的季节变化并不明显,总的来说为夏季略高于春秋季,种类以春季最多(65种),秋季次之(45种),夏季最少(39种).水鸟的数最组成中,以鹭类和鸥类最大,水鸟种类组成有较明显的季节性变化.春季鸟类群落的多样性和均匀度指数均最高,分别为3.2和0.76.物种类型最丰富的生境类型是芦苇沼泽生境,密度最大的为鱼塘生境.不同生境类型的多样性和均匀度指数均存在季节差异.对鸟类群落造成影响的主要凶子包括不规范的旅游活动、围河造田等.  相似文献   

5.
为了解四川南莫且湿地国家级自然保护区的鸟类多样性和湿地水鸟状况,2019年8月—2021年4月采用样线法和样点法对保护区的鸟类资源进行了10次野外调查,结合历史资料统计出鸟类18目46科176种,其中,国家一级重点保护野生鸟类9种,国家二级重点保护野生鸟类24种。居留类型以留鸟(102种,57.95%)和夏候鸟(51种,28.98%)为主;区系组成以古北界种类占优。草甸的物种丰富度和多度最高,灌丛及灌草丛的多样性指数最高;丰富度夏季最高,冬季最低。湿地水鸟的物种丰富度和多度都较少,仅有28种,调查到20种,以赤麻鸭Tadorna ferruginea、普通秋沙鸭Mergellus merganser和红脚鹬Tringa totanus较为常见,不同湿地生境的鸟类物种丰富度差异不大。本研究丰富了区域鸟类的基础信息,为保护区鸟类多样性的保护和管理提供了科学依据。  相似文献   

6.
达赉湖自然保护区冬春季鸟类生物多样性与生境的关系   总被引:13,自引:0,他引:13  
2004年4月-5月,利用样带法对达赉湖自然保护区5种主要生境类型中冬春季鸟类生物多样性进行了调查,利用Shannon-Wiener指数和Smith相关性系数分析了这5种生境类型中冬春季鸟类的生物多样性、区系、鸟类的群落组成、群落间的相似性和均匀度。结果表明,古北界鸟类是组成达赉湖鸟类群落的主体(约占冬春季鸟类的86%);芦苇湿地的鸟类多样性接近于芦苇甸的2倍:芦苇湿地鸟类群落的物种多样性最高(Shannon-Wiener指数为1.3001),而芦苇甸中鸟类群落的物种多样性最低(Shannon-Wiener指数为0.6629);芦苇湿地和芦苇甸两鸟类群落组成的相关性指数仅为0.038;从具有共同物种的多少考虑,典型草原和芨芨草原鸟类群落之间的关联较大。  相似文献   

7.
2014年3月21日—5月9日,采用样线法与定点观察法对沈阳市周边26个重要生态保护地春季迁徙期鸟类多样性进行了调查。共记录鸟类16目40科94种。其中,国家Ⅰ级重点保护鸟类2种;国家Ⅱ级重点保护鸟类4种。居留型组成以夏候鸟和旅鸟为主,共占记录鸟类物种总数的77.7%。区系组成以古北界种为主,占74.5%。生态型中鸣禽最多,占36.2%。不同调查样地的鸟类组成与多样性指数存在较大差异,水库湿地鸟类数量最多;湿地公园物种丰富度最高;森林生态系统鸟类多样性较高;沙地生境鸟类多样性较低。调查发现部分生态保护地存在人为干扰程度较大、生态破坏严重、生境类型高度单一等生态问题。针对相应的生态保护地应进一步加强生态环境治理,为鸟类生存提供良好的栖息环境。  相似文献   

8.
为了解现阶段四川卧龙国家级自然保护区的鸟类动态与多样性,2015年5月—2016年12月、2018年1—5月和2018年8月—2019年12月,采用样点法和样线法进行鸟类调查,加上2015年5月—2021年3月的相机拍摄记录,共记录鸟类293种,综合文献记载,保护区共记录鸟类18目66科392种。其中,国家一级重点保护野生动物13种,国家二级重点保护野生动物65种;留鸟188种,夏候鸟100种,冬候鸟18种,旅鸟85种,迷鸟1种。多样性分析表明,保护区春季的多样性指数(5.84)和均匀度指数(0.785)最高,冬季的多样性指数(5.48)和均匀度指数(0.756)最低;针阔混交林的多样性指数(5.74)和均匀度指数(0.825)最高,高山灌丛、草甸和流石滩的多样性指数(4.51)最低,针叶林的均匀度指数(0.703)最低。研究结果为保护珍稀濒危鸟类提供了基础信息和科学依据。  相似文献   

9.
四川老君山自然保护区不同生境鸟类多样性研究   总被引:3,自引:2,他引:1  
2006年4~5月采用"点样带法"(point transects)对四川老君山自然保护区的鸟类物种组成和种群数量进行了调查,共记录到85种鸟类,分属7目22科。其中,国家级保护鸟类5种,我国特有种13种,优势种4种。把调查区域划分为3种生境:原始林、次生林和人工林,并对各生境鸟类群落的鸟类数量级、鸟类群落的物种多样性、鸟类群落间的相似性进行了比较分析,其结果表明:1)国家级保护鸟类在原始林中最多,次生林中最少;我国特有种则是次生林中最多,人工林中最少。2)鸟类群落Shannon-Wiener物种多样性指数原始林最高,人工林最低。3)原始林和次生林之间的B ray-Curtis相似性指数最高,原始林和人工林之间相似性指数最低。  相似文献   

10.
湖北崩尖子自然保护区夏季鸟类群落及多样性研究   总被引:2,自引:0,他引:2  
2014 至2015 年每年的6—8 月, 采用样线法对崩尖子自然保护区夏季鸟类群落组成与结构进行了研究, 野外调查共记录鸟类9 目29 科 56 种, 其中国家重点保护鸟类 3 种。从居留型来看, 留鸟39 种,夏候鸟16 种, 旅鸟1种; 在地理区系构成上, 东洋种37 种(66.07%),古北种8 种(14.29%),广布种11 种(19.64%)。多样性分析结果显示,该区鸟类群落Shannon-Wiener 指数、Pielou 指数、和Simpson 指数分别为3.33、0.83 和0.95。从各生境群落多样性指数看,常绿落叶阔叶混交林中鸟类群落多样性指数最大,其次是落叶阔叶—温性针叶林,高山灌丛草甸带的多样性指数最小; 优势度指数在不同生境的变化趋势与群落多样性指数相似; 高山灌丛草甸中鸟类群落Pielou 均匀度指数最高,常绿阔叶林中的鸟类群落均匀度指数最低,旨在为崩尖子自然保护区的生物多样性保护提供科学依据。  相似文献   

11.
12.
13.
14.
15.
16.
On the origin of the Hirudinea and the demise of the Oligochaeta   总被引:10,自引:0,他引:10  
The phylogenetic relationships of the Clitellata were investigated with a data set of published and new complete 18S rRNA gene sequences of 51 species representing 41 families. Sequences were aligned on the basis of a secondary structure model and analysed with maximum parsimony and maximum likelihood. In contrast to the latter method, parsimony did not recover the monophyly of Clitellata. However, a close scrutiny of the data suggested a spurious attraction between some polychaetes and clitellates. As a rule, molecular trees are closely aligned with morphology-based phylogenies. Acanthobdellida and Euhirudinea were reconciled in their traditional Hirudinea clade and were included in the Oligochaeta with the Branchiobdellida via the Lumbriculidae as a possible link between the two assemblages. While the 18S gene yielded a meaningful historical signal for determining relationships within clitellates, the exact position of Hirudinea and Branchiobdellida within oligochaetes remained unresolved. The lack of phylogenetic signal is interpreted as evidence for a rapid radiation of these taxa. The placement of Clitellata within the Polychaeta remained unresolved. The biological reality of polytomies within annelids is suggested and supports the hypothesis of an extremely ancient radiation of polychaetes and emergence of clitellates.  相似文献   

17.
18.
19.
Data on the ontogeny of the posterior haptor of monogeneans were obtained from more than 150 publications and summarised. These data were plotted into diagrams showing evolutionary capacity levels based on the theory of a progressive evolution of marginal hooks, anchors and other attachment components of the posterior haptor in the Monogenea (Malmberg, 1986). 5 + 5 unhinged marginal hooks are assumed to be the most primitive monogenean haptoral condition. Thus the diagrams were founded on a 5 + 5 unhinged marginal hook evolutionary capacity level, and the evolutionary capacity levels of anchors and other haptoral attachement components were arranged according to haptoral ontogenetical sequences. In the final plotting diagram data on hosts, type of spermatozoa, oncomiracidial ciliation, sensilla pattern and protonephridial systems were also included. In this way a number of correlations were revealed. Thus, for example, the number of 5 + 5 marginal hooks correlates with the most primitive monogenean type of spermatozoon and with few sensillae, many ciliated cells and a simple protonephridial system in the oncomiracidium. On the basis of the reviewed data it is concluded that the ancient monogeneans with 5 + 5 unhinged marginal hooks were divided into two main lines, one retaining unhinged marginal hooks and the other evolving hinged marginal hooks. Both main lines have recent representatives at different marginal hook evolutionary capacity levels, i.e. monogeneans retaining a haptor with only marginal hooks. For the main line with hinged marginal hooks the name Articulon-choinea n. subclass is proposed. Members with 8 + 8 hinged marginal hooks only are here called Proanchorea n. superord. Monogeneans with unhinged marginal hooks only are here called Ananchorea n. superord. and three new families are erected for its recent members: Anonchohapteridae n. fam., Acolpentronidae n. fam. and Anacanthoridae n. fam. (with 7 + 7, 8 + 8 and 9 + 9 unhinged marginal hooks, respectively). Except for the families of Articulonchoinea (e.g. Acanthocotylidae, Gyrodactylidae, Tetraonchoididae) Bychowsky's (1957) division of the Monogenea into the Oligonchoinea and Polyonchoinea fits the proposed scheme, i.e. monogeneans with unhinged marginal hooks form one old group, the Oligonchoinea, which have 5 + 5 unhinged marginal hooks, and the other group form the Polyonchoinea, which (with the exception of the Hexabothriidae) has a greater number (7 + 7, 8 + 8 or 9 + 9) of unhinged marginal hooks. It is proposed that both these names, Oligonchoinea (sensu mihi) and Polyonchoinea (sensu mihi), will be retained on one side and Articulonchoinea placed on the other side, which reflects the early monogenean evolution. Except for the members of Ananchorea [Polyonchoinea], all members of the Oligonchoinea and Polyonchoinea have anchors, which imply that they are further evolved, i.e. have passed the 5 + 5 marginal hook evolutionary capacity level (Malmberg, 1986). There are two main types of anchors in the Monogenea: haptoral anchors, with anlages appearing in the haptor, and peduncular anchors, with anlages in the peduncle. There are two types of haptoral anchors: peripheral haptoral anchors, ontogenetically the oldest, and central haptoral anchors. Peduncular anchors, in turn, are ontogenetically younger than peripheral haptoral anchors. There may be two pairs of peduncular anchors: medial peduncular anchors, ontogentically the oldest, and lateral peduncular anchors. Only peduncular (not haptoral) anchors have anchor bars. Monogeneans with haptoral anchors are here called Mediohaptanchorea n. superord. and Laterohaptanchorea n. superord. or haptanchoreans. All oligonchoineans and the oldest polyonchoineans are haptanchoreans. Certain members of Calceostomatidae [Polyonchoinea] are the only monogeneans with both (peripheral) haptoral and peduncular anchors (one pair). These monogeneans are here called Mixanchorea n. superord. Polyonchoineans with peduncular anchors and unhinged marginal hooks are here called the Pedunculanchorea n. superord. The most primitive pedunculanchoreans have only one pair of peduncular anchors with an anchor bar, while the most advanced have both medial and lateral peduncular anchors; each pair having an anchor bar. Certain families of the Articulonchoinea, the Anchorea n. superord., also have peduncular anchors (parallel evolution): only one family, the Sundanonchidae n. fam., has both medial and lateral peduncular anchors, each anchor pair with an anchor bar. Evolutionary lines from different monogenean evolutionary capacity levels are discussed and a new system of classification for the Monogenea is proposed.In agreeing to publish this article, I recognise that its contents are controversial and contrary to generally accepted views on monogenean systematics and evolution. I have anticipated a reaction to the article by inviting senior workers in the field to comment upon it: their views will be reported in a future issue of this journal. EditorIn agreeing to publish this article, I recognise that its contents are controversial and contrary to generally accepted views on monogenean systematics and evolution. I have anticipated a reaction to the article by inviting senior workers in the field to comment upon it: their views will be reported in a future issue of this journal. Editor  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号