首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
药用植物艾纳香基因组DNA提取方法研究   总被引:3,自引:0,他引:3  
以药用植物艾纳香为研究对象,以-20℃保存、4℃保存、室温自然干燥和硅胶干燥四种样品保存方式,并采用SDS法、CTAB法、SDS-CTAB法和改良CTAB法4种不同的基因组DNA提取方法进行了对比试验,以期建立艾纳香的较好的样品保存方法和基因组DNA提取方法。结果表明,-20℃保存是艾纳香的较理想的样品保存方式;改良CTAB法是艾纳香基因组DNA提取较适宜的方法,该方法提取的DNA经紫外检测,其A_(260)/A_(280)为1.8左右,明显优于SDS法(1.1~1.5)、CTAB法(1.2~1.5)和SDS-CTAB法(1.4~1.6),琼脂糖凝胶电泳、酶切检测和PCR扩增也得出了同样的结论。  相似文献   

2.
顽拗植物龙眼基因组DNA提取方法的研究   总被引:22,自引:2,他引:20  
为从顽拗植物龙眼(Dimocarpus longan Lour.)叶片中获得可供后续分子生物学操作的基因组DNA.针对其组织细胞内富含多酚、多糖、单宁及色素等物质的特点,采用改进的CTAB法和SDS法,即在核裂解之前先破碎细胞.将存在于细胞质中的次生物质去除后再裂解细胞桉.结合其它一些改进措施.提取到的DNA沉淀呈纯白色.极易溶解于TE中。两种改进方法的OD260和OD280比值分别达到1.82和1.73,其鲜叶基因组DNA产量分别为103ug/g和127ug/g:RAPD扩增条带清晰,丰富.完全满足后续分子生物学操作的要求,其中改良CTAB方法效果更为理想,与之埘比.传统的CTAB法和SDS法提取到的DNA沉淀呈浅黄色甚至红褐色,很难被TE溶解,其OD260和OD280比值均低于1.5,也得不到扩增产物。  相似文献   

3.
蚧虫基因组DNA不同提取方法的比较   总被引:5,自引:0,他引:5  
实验以日本龟蜡蚧CeroplastesjaponicusGreen,白蜡绵粉蚧PhenacoccusfraxinusTang ,朝鲜球蚧DidesmococcuskoreanusBorchseniush和瘤大球坚蚧EulecaniumgiganteaShinji等 4种蚧虫为材料 ,分别用十二烷基硫酸钠 (SDS)法、十六烷基三乙基溴化铵 (CTAB)法、醋酸钾 (KAc)法和氯化钠 (NaCl)法等 4种方法 ,对单只蚧虫进行基因组DNA提取 ,用 0 8%琼脂糖凝胶电泳检测所提DNA。结果表明 ,4种方法都可以提取到基因组DNA ,但是比较而言 ,CTAB法和NaCl法所提取的DNA质量明显优于SDS法和KAc法 ,并适用于PCR。因此认为 ,CTAB法和NaCl法是实验室提取单只蚧虫基因组DNA更有效而实用的方法。  相似文献   

4.
An improved protocol for the isolation of DNA from dry material of someHesperis specimens is described. The isolated DNA is suitable for random amplification of polymorphic DNA (RAPD) analysis. Different DNA extraction protocols were examined to determine which might yield DNA from dry leaf tissue ofHesperis specimens. The methods examined include the protocols with hexadecyltrimethylammonium bromide (CTAB) described by Doyle and Doyle (1987); sodium dodecyl sulfate (SDS) by Dellaporta et al. (1983); and CTAB and SDS, the modified minipreparation, by Dellaporta et al (1983). None of these procedures yielded DNA of suitable purity for RAPD assay. We established an improved procedure involving CTAB and enzymatic digestion of proteins and RNA. The recovery of DNA with an average yield of 25 mg/g of leaf material was possible with this procedure. RAPD bands, which could be used to distinguish amongHesperis specimens, were generated.  相似文献   

5.
A reliable and efficient method for isolating Annona squamosa L. genomic DNA, free from polyphenols and polysaccharides has been developed. Different methods involving use of CTAB and SDS with or without modifications were used. A CTAB based extraction method which uses diatomite to remove polyphenols and polysaccharides proved to be the best. This method allowed recovery of good quality DNA in sufficient quantity suitable for complete digestion by restriction endonucleases and amplifiable in polymerase chain reaction as compared to other methods.  相似文献   

6.
An effective DNA extraction protocol for brown algae   总被引:3,自引:0,他引:3  
Successful extraction of total DNA from brown algae, which are generally polysaccharide and polyphenol rich, is often problematic using current methods. Persistent polysaccharide and polyphenolic compounds can hinder further application of modern molecular techniques requisite to molecular‐based evolutionary studies. Our broad and long‐term research goals with fucalean taxa, especially Sargassum, and problems with existing DNA extraction methods were an impetus to develop a reliable DNA extraction method. Initial research established hexadecyltrimethylammonium bromide (CTAB) based total‐DNA methods as the most viable for further empirical development. Several constituents effective at either complexing secondary compounds or creating a reductive extraction environment were increased in concentration or added to the extraction buffer. These seemingly minor changes resulted in the creation of a highly reductive extraction buffer and effective total‐ DNA harvesting technique. We detail these modifications and demonstrate the reliability of the modified protocol with a variety of brown algae and tissue preservation methods. Such DNA is shown to be suitable for a variety of molecular techniques.  相似文献   

7.
DNA is one of the most basic and essential genetic materials in the field of molecular biology.To date,isolation of sufficient and good-quality DNA is still a challenge for many plant species,though various DNA extraction methods have been published.In the present paper,a recycling DNA extraction method was proposed.The key step of this method was that a single plant tissue sample was recycled for DNA extraction for up to four times,and correspondingly four DNA precipitations(termed as the 1st,2nd,3rd and 4th DNA sample, respectively) were conducted.This recycling step was integrated into the conventional CTAB DNA extraction method to establish a recycling CTAB method.This modified CTAB method was tested in eight plant species,wheat,sorghum,barley,corn,rice,Brachypodium distachyon,Miscanthus sinensis and tung tree.The results showed that high-yield and good-quality DNA samples could be obtained by using this new method in all the eight plant species.The DNA samples were good templates for PCR amplification of both ISSR and SSR markers.The recycling method can be used in multiple plant species and can be integrated with multiple conventional DNA isolation methods,and thus is an effective and universal DNA isolation method.  相似文献   

8.
饲料样本本身的复杂性给进出口产品转基因(genetically modified,GM)成分的检测工作带来了巨大的压力和挑战。玉米蛋白粉主要包含蛋白质、淀粉和脂类等成分,从中提取高品质的DNA比较困难,而高品质的DNA是转基因检测研究的关键,能够大大降低进出口检验中的“假阴性”结果。采用市售主流品牌常用的7种试剂盒(Promega公司、Biotecon公司、天根生化科技有限公司、Invitrogen公司、Qiagen公司、TaKaRa公司)、CTAB法以及改良SDS?CTAB法提取玉米蛋白粉中的DNA。通过对玉米内源基因进行实时荧光PCR检测,发现改良SDS?CTAB法提取的玉米蛋白粉DNA质量明显优于其他方法,改良SDS?CTAB法内源基因zSSIIbCt值为28.14,较CTAB法提高了27%。研究建立的改良SDS?CTAB法在国内外尚属首次应用于饲料转基因产品中,并对7批次实验室送检样品进行转基因成分检测,成功检出2批次阳性样品。  相似文献   

9.
几种中药DNA提取方法的比较研究   总被引:4,自引:0,他引:4       下载免费PDF全文
陈莉  魏莉  周童  李敏瑜  覃玉斌  吴耀生   《广西植物》2007,27(1):137-139,136
以丹参、绞股蓝、三七为材料,分别采取CTAB法和SDS法提取基因组DNA,并通过紫外分光光度法和琼脂糖凝胶电泳对所提取的DNA样品进行检测,将它们在DNA产量、质量等方面的优缺点进行总结。结果表明,CTAB法能从丹参、绞股蓝中提取高质量的DNA,而三七的DNA更适合用SDS法提取。  相似文献   

10.
Owing to the presence of higher amount of polyphenolic and polysaccharide compounds, Terminalia arjuna (Roxburgh) is a significant medicinal plant in the Indian primeval medicine system. Polyphenolic and polysaccharide compounds also acts as inhibitors during Genomic DNA isolation from young leaves of T. arjuna, resulting in recovery of low quality genomic DNA, which affects downstream applications like PCR, restriction digestion’s, etc. In this study, nine different methods of genomic DNA isolation were used, out of which two methods were modified CTAB based methods, third one was HEPES based method and remaining six methods was FTA Plant Saver Card based. Out of the six FTA card based methods, in the first method, leaves were directly pressed inside the circle of FTA card. In the second and third methods, the leaves were homogenized with PBS and DNase RNase free water and the sample was applied on the FTA card. In the fourth and fifth methods: finally recovered DNA from two modified CTAB based methods was directly applied to the FTA card. In the sixth method, DNA precipitated after first phenol:chloroform:isoamyl alcohol precipitation of modified CTAB based methods dissolved in DNase RNase free water and applied to FTA Card. To optimize the PCR conditions, BSA (400 ng/μl), formamide (2.5%), DMSO (5% and 10%) and glycerol (5%, 10%, 15%, and 20%) was added into the PCR mix as enhancement agents for amplification of low quality genomic DNA (A260/A280 – 1.27 ± 0.090) of T. arjuna recovered using the HEPES Based method. It was found that the BSA was the best among them followed by 10% glycerol. In addition of BSA to the PCR mixture, it specifically enhances the amplification of the low quality DNA. It reduces the noise in-between the amplified bands and increases the intensity of PCR product.  相似文献   

11.
提取得到高质量的DNA样品是进行分子生物学研究的必要前提。为了找到一种适用于提取涡虫基因组DNA的常规方法,我们以东亚三角头涡虫为材料,分别用改良的CTAB法、SDS法、SDS-蛋白酶K法对涡虫的基因组DNA进行了制备,并对3种方法制备的涡虫基因组DNA进行了检测与比较。根据比较结果,我们认为改良的CTAB法最适合于涡虫基因组DNA的快速制备,为涡虫的分子生物学研究打下了基础。  相似文献   

12.
Polysaccharides influence concentration and purity of extracted DNA. Here we present rapid and efficient protocol for DNA extraction from samples rich in polysaccharides. The technique has been developed using cultures of Schizophyllum commune and involves a modification of known Cetyltrimethyl Ammonium Bromide (CTAB) protocol. To remove polysaccharides, Polyethylene Glycol (PEG) 8000 was added during DNA precipitation. Genomic DNA obtained with the CTAB-PEG method had high integrity, with average fragment size >30 kb, the concentration higher than 100 ng/μL, and the yield more than 30 μg/g. Presented technique is suitable for DNA extraction from fungi, bacteria, archaea or even mollusks with high polysaccharide content.  相似文献   

13.
We describe a simple and efficient method for genomic DNA extraction from woody fruit crops containing high polysaccharide levels. This method involves a modified CTAB or SDS procedure employing a purification step to remove polysaccharides by using water-saturated ether and 1.25 M NaCl. Precipitation with an equal volume of isopropanol caused a DNA pellet to form. After being washed with 70% ethyl alcohol, the pellet easily dissolved in TE buffer. Using this method, DNA was extracted from samples of more than 1000Citrus spp., including young leaves, old leaves, frosted old leaves, withered old leaves, and callus lines. The average yield of DNA ranged from 50–500 μg/g of sample. DNA was suitable for PCR and RFLP analyses and long-term storage. Recently, the procedure was used to isolate DNA from withered old leaves of more than 20 tropical and subtropical fruit crops.  相似文献   

14.
外来入侵植物加拿大一枝黄花居群间遗传差异分析   总被引:22,自引:0,他引:22  
黄华  郭水良 《植物研究》2005,25(2):197-204
采用三种不同的方法提取外来入侵植物加拿大一枝黄花总DNA,并应用RAPD技术分析了浙沪地区4个加拿大一枝黄花居群间的遗传分化。结果表明:(1)2×CTAB法提取的DNA具有较好的完整性,能较好地去除蛋白质、酚类和多糖杂质,是比较适合加拿大一枝黄花总DNA提取的方法;(2)加拿大一枝黄花的遗传多态性非常高, 13个引物在4个居群中共检测到102条扩增片段,多态带84条,多态率达到82.35%;特有带41条,占40.20%。居群之间的多态性分别是上海嘉定(73.13%) > 嘉兴乍浦(68.97%) > 杭州(68.42%) > 金华(57.14%);(3)13个引物检测的平均纯合度(J)为0.38,平均杂合度(H)为0.62;(4)Ne i基因相似系数、聚类分析和主成分分析表明,加拿大一枝黄花不同居群间的遗传差异程度较大,居群间的遗传分化与地理位置存在对应关系;(5)加拿大一枝黄花的入侵居群的适应性进化与杂草特性紧密相关。  相似文献   

15.
胡椒叶片基因组DNA提取方法比较   总被引:2,自引:0,他引:2  
姜艳  刘进平 《生物技术》2009,19(6):41-44
目的:研究建立胡椒叶片中提取高质量DNA的方法。方法:采用各种CTAB法和SDS法的改良方法,提取胡椒叶片中的总DNA,并对DNA进行紫外和电泳检测。结果:改良CTAB法4和5提取的DNA经电泳检测,有一条明亮主带,且无拖尾现象,样品槽无荧光出现,说明抽出的DNA纯度较高,一致性好;测定其OD260和OD280值,并计算其比值,OD260/OD280值在1.8-2.0之间,提取率在51.667-60.000μg/g之间,获得的基因组DNA质量高。结论:改良CTAB法4和法5可从胡椒幼叶中提取高质量DNA。  相似文献   

16.
单头实蝇高质量基因组DNA的获得为实蝇分子生态学研究奠定了重要基础。本文提出一种经济高效的实蝇基因组DNA提取方法,该方法广泛适用于不同虫态、不同保存条件的实蝇标本,与传统的CTAB法和SDS法相比操作简单、耗时短,得率高。  相似文献   

17.
苔藓植物DNA提取方法研究   总被引:15,自引:3,他引:12  
侯义龙  曹同  蔡丽娜  孙志刚  崔琳 《广西植物》2003,23(5):425-428,435
提取高质量的 DNA是对苔藓植物遗传多样性进行研究的基础。该文以苔藓植物为试材 ,用 5种方法 ,即快速提取法、改良 CTAB法、CTAB法、SDS法及高盐法 (第一种为自行设计 ,第二种是对原有方法的改进 )对苔藓植物 DNA提取方法进行了比较研究。结果表明 ,快速提取法和改良 CTAB法是 2种适合于苔藓植物 DNA提取的方法。这 2种方法提取的 DNA浓度和纯度均比较高 ,凝胶电泳显示无明显降解现象 ,适宜作为 PCR扩增的模板 ,并成功地进行了 RAPD扩增。  相似文献   

18.
High quality genomic DNA is the first step in the development of DNA-based markers for fingerprinting and genetic diversity of crops, including mango (Mangifera indica L.), a woody perennial. Poor quality genomic DNA hinders the successful application of analytical DNA-based tools. Standard protocols for DNA extraction are not suitable for mango since the extracted genomic DNA often contains secondary metabolites that interfere with analytical applications. In this study, we employed an additional step to remove polysaccharides, polyphenols and secondary metabolites from genomic DNA extracted from young or mature leaf tissue; then a modified traditional cetyl trimethyl ammonium bromide (CTAB) method was applied. The use of 0.4 M glucose improved DNA quality and avoided contamination and browning by polyphenolics, relative to the traditional CTAB method. This is an easy and efficient method for genomic DNA extraction from both young and mature leaves of mango. The isolated DNA was free of polysaccharides, polyphenols, RNA and other major contaminants, as judged by its clear colour, its viscosity, A260/A280 ratio and suitability for PCR-based reactions. This modified protocol was also used to extract high quality genomic DNA from other woody perennials, including walnut, guava, lychee, pear, grape and sugarcane.  相似文献   

19.
降香黄檀基因组DNA的提取方法研究   总被引:2,自引:0,他引:2  
目的:建立适合降香黄檀基因组DNA的提取方法。方法:采用常规SDS法、常规CTAB法和改良CTAB法等3种方法提取降香黄檀叶片基因组DNA,经电泳、吸光度、酶切检测比较提取结果;对采用改良CTAB法提取的基因组DNA进行ISSR-PCR检测。结果:改良CTAB法通过增加洗涤样品步骤,有效去除了多糖和多酚类物质,提取的DNA质量好,无降解现象,无蛋白质、盐离子及RNA污染。结论:改良CTAB法是一种高效的提取方法,使用该方法所得DNA的质量完全能够满足相应的分子操作需要。  相似文献   

20.

Background

DNA extraction is a routine step in many insect molecular studies. A variety of methods have been used to isolate DNA molecules from insects, and many commercial kits are available. Extraction methods need to be evaluated for their efficiency, cost, and side effects such as DNA degradation during extraction.

Methodology/Principal Findings

From individual western corn rootworm beetles, Diabrotica virgifera virgifera, DNA extractions by the SDS method, CTAB method, DNAzol® reagent, Puregene® solutions and DNeasy® column were compared in terms of DNA quantity and quality, cost of materials, and time consumed. Although all five methods resulted in acceptable DNA concentrations and absorbance ratios, the SDS and CTAB methods resulted in higher DNA yield (ng DNA vs. mg tissue) at much lower cost and less degradation as revealed on agarose gels. The DNeasy® kit was most time-efficient but was the costliest among the methods tested. The effects of ethanol volume, temperature and incubation time on precipitation of DNA were also investigated. The DNA samples obtained by the five methods were tested in PCR for six microsatellites located in various positions of the beetle''s genome, and all samples showed successful amplifications.

Conclusion/Significance

These evaluations provide a guide for choosing methods of DNA extraction from western corn rootworm beetles based on expected DNA yield and quality, extraction time, cost, and waste control. The extraction conditions for this mid-size insect were optimized. The DNA extracted by the five methods was suitable for further molecular applications such as PCR and sequencing by synthesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号