首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
血凝素(HA)是位于流感病毒囊膜表面的一种Ⅰ型跨膜糖蛋白,是流感病毒结合宿主细胞表面受体,介导病毒入胞的关键分子,也是中和抗体以及疫苗研制的重要靶标.HA表面糖基化与病毒毒力、感染宿主范围等密切相关,且其表面糖链变化会影响其结构与功能.然而目前关于流感病毒HA糖基化的研究主要集中在其糖基化位点上,而对于HA上详细的糖链结构知之甚少.本文应用禽流感病毒特异识别的唾液酸糖链(SAα2-3Gal)受体,制备特异的糖链磁性微粒复合物,进而从H7N2禽流感病毒中分离纯化HA,并采用SDS-PAGE及质谱技术进行鉴定.确定提取物系HA后,进一步利用凝集素芯片联合质谱技术研究禽流感病毒H7N2的HA表面糖型,结果显示H7N2禽流感病毒HA表面主要含有岩藻糖、半乳糖、N-乙酰半乳糖胺、甘露糖、N-乙酰葡糖胺等糖链结构,共获得16个糖链结构较为准确的寡糖,这些糖链可能与HA生物学功能相关.本研究有助于揭示禽流感病毒感染宿主的糖链作用机制,有助于设计制备针对HA相关的糖链疫苗.  相似文献   

2.
新型冠状病毒疫情(COVID-19)是21世纪截至目前人类面对的最为严重的公共卫生事件。疫苗、中和抗体以及小分子化合药物的出现有效预防和阻止了COVID-19的快速传播,而不断出现的病毒突变体却使这些疫苗及药物的效价降低,这对COVID-19的预防及治疗提出了新的挑战。新型冠状病毒(SARS-CoV-2)通常会先黏附于呼吸道表面的大分子糖链——硫酸乙酰肝素,进而与特异性受体人血管紧张素转化酶2(human angiotensin-converting enzyme 2,hACE2)结合,从而实现对人体的侵入。SARS-CoV-2的刺突(spike,S)蛋白是高度糖基化的,而糖基化对于hACE2与S蛋白的结合也有着重要影响,S蛋白在宿主体内还会被一系列凝集素受体所结合,这意味着糖链在SARS-CoV-2的入侵及感染过程中有着重要的作用。基于SARS-CoV-2的糖基化及糖受体识别机制开发糖链抑制剂可能是预防或治疗新型冠状病毒感染的有效手段,相关研究发现海洋来源的硫酸化多糖、肝素分子及其他的一些糖类具有抗SARS-CoV-2的活性。本文系统阐述了新型冠状病毒的糖基化及其糖链在入侵、感染中的作用,并对抗SARS-CoV-2糖链抑制剂的发现和机制研究现状进行了总结,在此基础上还对糖类抗病毒药物的机遇与挑战进行了展望。  相似文献   

3.
被膜蛋白糖基化在HIV感染中的作用   总被引:1,自引:1,他引:0  
在HIV感染过程中,病毒被膜蛋白糖基化起着重要作用。它使病毒粒子具有高度糖基化的表面,帮助HIV逃避人体免疫细胞识别和攻击。在病毒入侵时,被膜糖蛋白与宿主细胞表面的受体结合,并进行一系列构象变化,使病毒粒子顺利地与宿主细胞膜融合。介绍近年来对被膜蛋白糖基化过程与HIV成熟、感染和逃避免疫应答等方面分子水平作用机理的深入了解,这些作用机理将会有助于艾滋病疫苗的研制和以“糖链为靶”药物的开发。  相似文献   

4.
病毒受体是引发宿主受病毒感染的主要决定因素。病毒受体是指位于宿主细胞表面能被病毒吸附蛋白识别并与之结合 ,从而引起病毒感染的分子复合物。病毒吸附于宿主细胞表面是病毒感染的起始环节。而病毒受体与病毒吸附蛋白的结合是有其特异性的 ,即病毒感染细胞具有不同的组织嗜性和宿主范围。1 .病毒受体的本质病毒受体可分为单分子或多分子复合体。从生化角度上来说 ,大多数是蛋白聚糖、脂类或糖脂、糖蛋白 3种类型。硫酸乙酰肝素蛋白聚糖为单纯疱疹病毒的受体 ,多瘤病毒和正粘病毒的受体为糖蛋白及糖脂的神经节苷脂。部分病毒受体是细胞表…  相似文献   

5.
为了研究人副流感病毒3型(hPIV3)HN糖蛋白N-糖链的功能,采用基因定点突变技术构建糖基化位点突变体,然后检测各突变株的蛋白电泳速率、细胞表面表达量、受体结合活性、神经氨酸酶活性和促细胞融合活性。HN分子的G1、G2、G3和G4 4个糖基化位点分别和联合突变后发现G1、G2和G4及其联合突变株(G12、G14、G24和G124)电泳速率加快,而G3突变株电泳速率没有变化。各突变株的表达效率,神经氨酸酶活性与野毒株相比差别无统计学意义(P>0.05),但受体结合活性和促细胞融合活性均有不同程度的降低(P<0.05)。G1、G2和G4位点突变后受体结合活性分别为突变前的83.94%、76.45%和55.32%,而促细胞融合活性降为突变前的80.84%、77.83%和64.16%。联合突变株G12、G14、G24和G124血吸附活性进一步降低,为突变前的33.07%、20.67%、19.96%和15.11%,促细胞融合活性进一步降低为突变前的46.36%、12.04%、13.43%和4.05%。结果表明:hPIV3HN糖蛋白的糖链对HN糖蛋白的受体结合活性和促细胞融合活性有重要影响,推断糖链的丢失可能会引起HN糖蛋白头部结构(受体结合活性位点所在区域)或者方向的改变或者无法与宿主细胞膜表面的凝集素受体(一种与N-糖链结合的受体)结合,进而导致受体结合活性和促细胞融合活性的降低。  相似文献   

6.
先天性免疫监视机制的核心是通过模式识别受体(pattern recognition receptors,PRRs)识别病毒分子诱导抗病毒防御,使宿主免受感染。PRRs表达在不同类型细胞的不同细胞区室,包括细胞膜、内体膜、溶酶体膜和胞质。病毒进入细胞区室后将被一个或多个模式识别受体所识别并激活机体的免疫反应。主要对细胞质内模式识别受体视黄酸诱导基因I样受体(retinoic acid-inducible gene I(RIG-I)-like receptors,RLRs)、核苷酸结合寡聚化结构域样受体(nucleotide-binding oligomerization domain(NOD)-like receptors,NLRs)、DEXDc螺旋酶受体(DLRs)及最近发现的DNA模式识别分子——DAI(DNA-dependent activator of interferonregulatory factors)识别病毒核酸并诱导I型干扰素产生的分子机制作一综述。  相似文献   

7.
一系列广泛的宿主细胞信号转导通路可以被流感病毒感染激活. 一些信号转导通路引起宿主细胞的先天免疫应答来抵抗流感病毒, 而一些其他的信号转导通路却是流感病毒实现高效复制所必需的. 本文综述了宿主细胞中由流感病毒感染引起的胞内信号转导, 包括宿主模式识别受体(PRRs)相关信号, PKC, Raf/MEK/ERK和PI3K/Akt信号, 同时对上述信号通路的下游具体效应进行了总结. 这些效应包括宿主细胞对流感病毒的识别, 流感病毒的吸附及入侵, 流感病毒核蛋白的输出, 病毒蛋白的翻译控制, 流感病毒引起的宿主细胞凋亡. 对流感病毒引起的细胞信号转导的研究有助于更加清晰地认识病毒与宿主的相互作用, 也是寻找新的抗病毒靶点和新的抗病毒策略的基础.  相似文献   

8.
病毒受体的研究方法   总被引:1,自引:0,他引:1  
1概况 病毒受体可以定义为位于宿主细胞表面能够被病毒吸附蛋白识别并与之结合,从而引起病毒感染的分子复合物,其化学本质是糖蛋白、蛋白聚糖、脂类或糖脂,大多数属于蛋白质.病毒受体可以是单体也可以是多分子复合物,具有特异性、高亲和性、饱和性、结合位点及靶细胞部位的有限性以及独特的生物学活性等[1].病毒受体是公认的引发病毒感染宿主细胞的主要决定因素,也是影响病毒宿主特异性和组织亲嗜性的决定因素之一.  相似文献   

9.
1概况病毒受体可以定义为位于宿主细胞表面能够被病毒吸附蛋白识别并与之结合,从而引起病毒感染的分子复合物,其化学本质是糖蛋白、蛋白聚糖、脂类或糖脂,大多数属于蛋白质。病毒受体可以是单体也可以是多分子复合物,具有特异性、高亲和性、饱和性、结合位点及靶细胞部位的有限性以及独特的生物学活性等[1]。病毒受体是公认的引发病毒感染宿主细胞的主要决定因素,也是影响病毒宿主特异性和组织亲嗜性的决定因素之一。研究病毒受体的特性及其功能对于从分子水平阐明病毒感染与免疫的机制,深刻理解病毒与宿主细胞的相互关系,研制更有效的病毒…  相似文献   

10.
<正>自然杀伤(NK)细胞在抗病毒感染和消灭转化细胞的过程中发挥核心作用。通过抑制和激活受体控制病原体感染细胞和肿瘤细胞的识别。曾表明NK细胞激活(杀伤)受体中的天然细胞毒性受体NKp44和NKP46,可与流感病毒感染的细胞表面表达的病毒血凝素(HA)蛋白相互作用。我们进一步发现,NKp44/NKP46和病毒的HA之间的相互作用  相似文献   

11.
Influenza A viruses, members of the Orthomyxoviridae family, are responsible for annual seasonal influenza epidemics and occasional global pandemics. The binding of viral coat glycoprotein hemagglutinin (HA) to sialylated glycan receptors on host epithelial cells is the critical initial step in the infection and transmission of these viruses. Scientists believe that a switch in the binding specificity of HA from Neu5Acα2-3Gal linked (α2-3) to Neu5Acα2-6Gal linked (α2-6) glycans is essential for the crossover of the viruses from avian to human hosts. However, studies have shown that the classification of glycan binding preference of HA based on sialic acid linkage alone is insufficient to establish a correlation between receptor specificity of HA and the efficient transmission of influenza A viruses. A recent study reported extensive diversity in the structure and composition of α2-6 glycans (which goes beyond the sialic acid linkage) in human upper respiratory epithelia and identified different glycan structural topologies. Biochemical examination of the multivalent HA binding to these diverse sialylated glycan structures also demonstrated that high affinity binding of HA to α2-6 glycans with a characteristic umbrella-like structural topology is critical for efficient human adaptation and human-human transmission of influenza A viruses. This review summarizes studies which suggest a new paradigm for understanding the role of the structure of sialylated glycan receptors in influenza virus pathogenesis.  相似文献   

12.
Ferrets are widely used as animal models for studying influenza A viral pathogenesis and transmissibility. Human-adapted influenza A viruses primarily target the upper respiratory tract in humans (infection of the lower respiratory tract is observed less frequently), while in ferrets, upon intranasal inoculation both upper and lower respiratory tract are targeted. Viral tropism is governed by distribution of complex sialylated glycan receptors in various cells/tissues of the host that are specifically recognized by influenza A virus hemagglutinin (HA), a glycoprotein on viral surface. It is generally known that upper respiratory tract of humans and ferrets predominantly express α2→6 sialylated glycan receptors. However much less is known about the fine structure of these glycan receptors and their distribution in different regions of the ferret respiratory tract. In this study, we characterize distribution of glycan receptors going beyond terminal sialic acid linkage in the cranial and caudal regions of the ferret trachea (upper respiratory tract) and lung hilar region (lower respiratory tract) by multiplexing use of various plant lectins and human-adapted HAs to stain these tissue sections. Our findings show that the sialylated glycan receptors recognized by human-adapted HAs are predominantly distributed in submucosal gland of lung hilar region as a part of O-linked glycans. Our study has implications in understanding influenza A viral pathogenesis in ferrets and also in employing ferrets as animal models for developing therapeutic strategies against influenza.  相似文献   

13.
The recent emergence of a novel avian A/H7N9 influenza virus in poultry and humans in China, as well as laboratory studies on adaptation and transmission of avian A/H5N1 influenza viruses, has shed new light on influenza virus adaptation to mammals. One of the biological traits required for animal influenza viruses to cross the species barrier that received considerable attention in animal model studies, in vitro assays, and structural analyses is receptor binding specificity. Sialylated glycans present on the apical surface of host cells can function as receptors for the influenza virus hemagglutinin (HA) protein. Avian and human influenza viruses typically have a different sialic acid (SA)‐binding preference and only few amino acid changes in the HA protein can cause a switch from avian to human receptor specificity. Recent experiments using glycan arrays, virus histochemistry, animal models, and structural analyses of HA have added a wealth of knowledge on receptor binding specificity. Here, we review recent data on the interaction between influenza virus HA and SA receptors of the host, and the impact on virus host range, pathogenesis, and transmission. Remaining challenges and future research priorities are also discussed.  相似文献   

14.
Influenza viruses isolated during the 2009 H1N1 pandemic generally lack known molecular determinants of virulence associated with previous pandemic and highly pathogenic avian influenza viruses. The frequency of the amino acid substitution D222G in the hemagglutinin (HA) of 2009 H1N1 viruses isolated from severe but not mild human cases represents the first molecular marker associated with enhanced disease. To assess the relative contribution of this substitution in virus pathogenesis, transmission, and tropism, we introduced D222G by reverse genetics in the wild-type HA of the 2009 H1N1 virus, A/California/04/09 (CA/04). A dose-dependent glycan array analysis with the D222G virus showed a modest reduction in the binding avidity to human-like (α2-6 sialylated glycan) receptors and an increase in the binding to avian-like (α2-3 sialylated glycan) receptors in comparison with wild-type virus. In the ferret pathogenesis model, the D222G mutant virus was found to be similar to wild-type CA/04 virus with respect to lethargy, weight loss and replication efficiency in the upper and lower respiratory tract. Moreover, based on viral detection, the respiratory droplet transmission properties of these two viruses were found to be similar. The D222G virus failed to productively infect mice inoculated by the ocular route, but exhibited greater viral replication and weight loss than wild-type CA/04 virus in mice inoculated by the intranasal route. In a more relevant human cell model, D222G virus replicated with delayed kinetics compared with wild-type virus but to higher titer in human bronchial epithelial cells. These findings suggest that although the D222G mutation does not influence virus transmission, it may be considered a molecular marker for enhanced replication in certain cell types.  相似文献   

15.
The 2009 H1N1 influenza pandemic is the first human pandemic in decades and was of swine origin. Although swine are believed to be an intermediate host in the emergence of new human influenza viruses, there is still little known about the host barriers that keep swine influenza viruses from entering the human population. We surveyed swine progenitors and human viruses from the 2009 pandemic and measured the activities of the hemagglutinin (HA) and neuraminidase (NA), which are the two viral surface proteins that interact with host glycan receptors. A functional balance of these two activities (HA binding and NA cleavage) is found in human viruses but not in the swine progenitors. The human 2009 H1N1 pandemic virus exhibited both low HA avidity for glycan receptors as a result of mutations near the receptor binding site and weak NA enzymatic activity. Thus, a functional match between the hemagglutinin and neuraminidase appears to be necessary for efficient transmission between humans and may be an indicator of the pandemic potential of zoonotic viruses.  相似文献   

16.
Numerous viruses rely on glycan receptor binding as the initial step in host cell infection. Engagement of specific glycan receptors such as sialylated carbohydrates, glycosaminoglycans, or histo‐blood group antigens can determine host range, tissue tropism, and pathogenicity. Glycan receptor‐binding sites are typically located in exposed regions on viral surfaces—sites that are also generally prone to binding of neutralizing antibodies that directly interfere with virus‐glycan receptor interactions. In this review, we examine the locations and architecture of the glycan‐ and antibody‐binding sites in four different viruses with stalk‐like attachment proteins (reovirus, influenza virus, norovirus, and coronavirus) and investigate the mechanisms by which antibodies block glycan recognition. Those viruses exemplify that direct molecular mimicking of glycan receptors by antibodies is rare and further demonstrate that antibodies often partly overlap or bind sufficiently close to the receptor‐binding region to hinder access to this site, achieving neutralization partially because of the epitope location and partly due to their sheer size.  相似文献   

17.
Avian influenza subtypes such as H5, H7 and H9 are yet to adapt to the human host so as to establish airborne transmission between humans. However, lab-generated reassorted viruses possessing hemagglutinin (HA) and neuraminidase (NA) genes from an avian H9 isolate and other genes from a human-adapted (H3 or H1) subtype acquired two amino acid changes in HA and a single amino acid change in NA that confer respiratory droplet transmission in ferrets. We previously demonstrated for human-adapted H1, H2 and H3 subtypes that quantitative binding affinity of their HA to α2→6 sialylated glycan receptors correlates with respiratory droplet transmissibility of the virus in ferrets. Such a relationship remains to be established for H9 HA. In this study, we performed a quantitative biochemical characterization of glycan receptor binding properties of wild-type and mutant forms of representative H9 HAs that were previously used in context of reassorted viruses in ferret transmission studies. We demonstrate here that distinct molecular interactions in the glycan receptor-binding site of different H9 HAs affect the glycan-binding specificity and affinity. Further we show that α2→6 glycan receptor-binding affinity of a mutant H9 HA carrying Thr-189→Ala amino acid change correlates with the respiratory droplet transmission in ferrets conferred by this change. Our findings contribute to a framework for monitoring the evolution of H9 HA by understanding effects of molecular changes in HA on glycan receptor-binding properties.  相似文献   

18.
The 2009 H1N1 influenza A virus continues to circulate among the human population as the predominant H1N1 subtype. Epidemiological studies and airborne transmission studies using the ferret model have shown that the transmission efficiency of 2009 H1N1 viruses is lower than that of previous seasonal strains and the 1918 pandemic H1N1 strain. We recently correlated this reduced transmission efficiency to the lower binding affinity of the 2009 H1N1 hemagglutinin (HA) to α2→6 sialylated glycan receptors (human receptors). Here we report that a single point mutation (Ile219→Lys; a base pair change) in the glycan receptor-binding site (RBS) of a representative 2009 H1N1 influenza A virus, A/California/04/09 or CA04/09, quantitatively increases its human receptor-binding affinity. The increased human receptor-affinity is in the same range as that of the HA from highly transmissible seasonal and 1918 pandemic H1N1 viruses. Moreover, a 2009 H1N1 virus carrying this mutation in the RBS (generated using reverse genetics) transmits efficiently in ferrets by respiratory droplets thereby reestablishing our previously observed correlation between human receptor-binding affinity and transmission efficiency. These findings are significant in the context of monitoring the evolution of the currently circulating 2009 H1N1 viruses.  相似文献   

19.
To better understand influenza virus infection of pigs, we examined primary swine respiratory epithelial cells (SRECs, the primary target cells of influenza viruses in vivo), as a model system. Glycomic profiling of SRECs by mass spectrometry revealed a diverse range of glycans terminating in sialic acid or GalαGal. In terms of sialylation, α2–6 linkage was more abundant than α2–3, and NeuAc was more abundant than NeuGc. Virus binding and infection experiments were conducted to determine functionally important glycans for influenza virus infection, with a focus on recently emerged swine viruses. Infection of SRECs with swine and human viruses resulted in different infectivity levels. Glycan microarray analysis with a high infectivity “triple reassortant” virus ((A/Swine/MN/593/99 (H3N2)) that spread widely throughout the North American swine population and a lower infectivity human virus isolated from a single pig (A/Swine/ONT/00130/97 (H3N2)) showed that both viruses bound exclusively to glycans containing NeuAcα2–6, with strong binding to sialylated polylactosamine and sialylated N-glycans. Treatment with mannosamine precursors of sialic acid (to alter NeuAc/NeuGc abundances) and linkage-specific sialidases prior to infection indicated that the influenza viruses tested preferentially utilize NeuAcα2–6-sialylated glycans to infect SRECs. Our data indicate that NeuAcα2–6-terminated polylactosamine and sialylated N-glycans are important determinants for influenza viruses to infect SRECs. As NeuAcα2–6 polylactosamine glycans play major roles in human virus infection, the importance of these receptor components in virus infection of swine cells has implications for transmission of viruses between humans and pigs and for pigs as possible adaptation hosts of novel human influenza viruses.  相似文献   

20.
In the context of recently emerged novel influenza strains through reassortment, avian influenza subtypes such as H5N1, H7N7, H7N2, H7N3 and H9N2 pose a constant threat in terms of their adaptation to the human host. Among these subtypes, it was recently demonstrated that mutations in H5 and H9 hemagglutinin (HA) in the context of lab-generated reassorted viruses conferred aerosol transmissibility in ferrets (a property shared by human adapted viruses). We previously demonstrated that the quantitative binding affinity of HA to α2→6 sialylated glycans (human receptors) is one of the important factors governing human adaptation of HA. Although the H7 subtype has infected humans causing varied clinical outcomes from mild conjunctivitis to severe respiratory illnesses, it is not clear where the HA of these subtypes stand in regard to human adaptation since its binding affinity to glycan receptors has not yet been quantified. In this study, we have quantitatively characterized the glycan receptor-binding specificity of HAs from representative strains of Eurasian (H7N7) and North American (H7N2) lineages that have caused human infection. Furthermore, we have demonstrated for the first time that two specific mutations; Gln226→Leu and Gly228→Ser in glycan receptor-binding site of H7 HA substantially increase its binding affinity to human receptor. Our findings contribute to a framework for monitoring the evolution of H7 HA to be able to adapt to human host.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号