首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 125 毫秒
1.
为了在生物制氢过程中最大限度提高产氢量和产氢速率,增大底物的利用率以及更好地发挥菌种间的协同作用,联合生物制氢技术成为近年来人们关注的焦点。综述了目前国内外几种联合生物制氢方法的研究现状。并从产氢机理的角度对几种联合制氢技术进行了分析比较,重点强调光合发酵和暗发酵联合生物制氢技术具有广泛的发展前景,并指出其存在的问题和未来的发展趋势。  相似文献   

2.
随着能源紧缺的日益加剧,以及化石燃料燃烧引起的环境问题逐渐突显,氢能作为一种清洁可再生能源越来越受到青睐。生物制氢与热化学及电化学制氢相比其反应条件温和、低耗、绿色,是一项非常有应用前景的技术。生物制氢从广义上可以分为暗发酵和光发酵产氢两种,其中暗发酵微生物可以利用有机废弃物产生氢气以及有机酸等副产物,光合细菌在光照和固氮酶的作用下可以将暗发酵产生的有机酸继续用于产氢,因此两种发酵产氢方式相结合可以提高有机废物的资源化效率。将近年来暗发酵-光发酵两阶段生物制氢技术进行整理分析,从其产氢机理、主要影响因素、暗发酵-光发酵产氢结合方式(两步法、混合培养产氢)几个方面进行阐述,最后指出该技术面临的挑战。  相似文献   

3.
氢作为一种清洁高效的可再生能源日益受到人们的重视。本文从微生物制氢的条件与代谢调控方面探讨了生物制氢的最新进展。目前常用产氢细菌进行了总结,分析了细菌的培养方式和工艺方法,探讨了影响生物制氢的各种因素(pH,温度,基质,离子浓度,反应器等)。在此基础之上,阐述了分子生物学技术在生物制氢中的应用及系统代谢调控。最后,对生物制氢今后的主要研究方向及前景进行了展望。  相似文献   

4.
厌氧发酵法生物制氢在国内外受到了普遍关注, 对产氢起核心作用的微生物又成为了研究的重点课题。论述了厌氧发酵产氢微生物的研究进展, 分别对厌氧产氢细菌的发酵类型、产氢能力、菌种选育、基因改良等进行了介绍, 结合国内外研究现状, 对厌氧发酵产氢微生物研究目前存在的问题进行了总结和展望。  相似文献   

5.
汤桂兰  孙振钧 《生物技术》2007,17(1):93-97,F0004
氢是一种理想的清洁能源,生物制氢是在新能源的研究利用中占有日趋重要的位置。该文综述了国内外光合产氢和发酵产氢的机理、研究现状及存在的问题,并对其进一步发展进行了分析和展望。  相似文献   

6.
厌氧发酵产氢微生物的研究进展   总被引:1,自引:0,他引:1  
厌氧发酵法生物制氢在国内外受到了普遍关注, 对产氢起核心作用的微生物又成为了研究的重点课题。论述了厌氧发酵产氢微生物的研究进展, 分别对厌氧产氢细菌的发酵类型、产氢能力、菌种选育、基因改良等进行了介绍, 结合国内外研究现状, 对厌氧发酵产氢微生物研究目前存在的问题进行了总结和展望。  相似文献   

7.
氢气是一种清洁高效的可再生能源.该文比较分析了常用于氢气制取的方法,讨论了生物制氢的微生物种类以及发酵产氢的诸多影响因素,对目前生物制氢的研究进展进行了综述.  相似文献   

8.
绿藻高效制氢影响因素的研究   总被引:1,自引:0,他引:1  
绿藻作为生物能源的研究和开发具有诱人的发展前景。本文概述了绿藻制氢和产氢途径的研究进展,重点介绍了绿藻高效制氢的影响因素--绿藻[Fe]-氢化酶的研究和绿藻制氢的重要控制参数,同时,对绿藻制氢作为生物能源的开发应用前景进行了展望。  相似文献   

9.
厌氧产氢微生物研究进展   总被引:4,自引:0,他引:4  
微生物是生物制氢的核心。本文论述了通过厌氧代谢途径产氢的微生物种类及高效产氢微生物选育和应用的研究趋势, 其中重点论述了中温和嗜热厌氧产氢微生物的产氢能力、底物利用范围及代谢特性, 简述了嗜热一氧化碳营养型产氢菌的种类及代谢特点。  相似文献   

10.
衣藻生物制氢的研究进展   总被引:1,自引:1,他引:0  
综述了利用衣藻生产氢气作为再生能源的研究进展。分别介绍了衣藻产氢的代谢机理、培养条件、衣藻氢化酶的特性以及利用分子生物学手段、生物信息学手段和生物工程技术提高衣藻生物制氢效率的方法,包括氢化酶的氧耐受性的改造、外源氢化酶基因的表达、影响衣藻产氢的关键基因的筛选、利用缺硫培养基和固定化培养方法提高氢气产量等。最后,还对利用衣藻生物制氢的可行性和经济性进行了分析,对其发展方向提出自己的看法。  相似文献   

11.
Among different technologies of hydrogen production, bio-hydrogen production exhibits perhaps the greatest potential to replace fossil fuels. Based on recent research on dark fermentative hydrogen production, this article reviews the following aspects towards scaled-up application of this technology: bioreactor development and parameter optimization, process modeling and simulation, exploitation of cheaper raw materials and combining dark-fermentation with photo-fermentation. Bioreactors are necessary for dark-fermentation hydrogen production, so the design of reactor type and optimization of parameters are essential. Process modeling and simulation can help engineers design and optimize large-scale systems and operations. Use of cheaper raw materials will surely accelerate the pace of scaled-up production of biological hydrogen. And finally, combining dark-fermentation with photo-fermentation holds considerable promise, and has successfully achieved maximum overall hydrogen yield from a single substrate. Future development of bio-hydrogen production will also be discussed.  相似文献   

12.
L-谷氨酸是目前产量最大的氨基酸品种,也是我国生产规模最大的生物发酵产品。随着合成生物技术以及新型生产装备和技术的发展,国内L-谷氨酸菌种和生产技术近年来取得了明显的提升。本文从L-谷氨酸产业的现状分析和关键技术创新需求的角度出发,概述了L-谷氨酸菌种和生产技术的研究进展,介绍了近年来L-谷氨酸生产关键技术的创新开发和产业应用的进展。  相似文献   

13.
Fermentative biohydrogen production: trends and perspectives   总被引:1,自引:1,他引:0  
Biologically produced hydrogen (biohydrogen) is a valuable gas that is seen as a future energy carrier, since its utilization via combustion or fuel cells produces pure water. Heterotrophic fermentations for biohydrogen production are driven by a wide variety of microorganisms such as strict anaerobes, facultative anaerobes and aerobes kept under anoxic conditions. Substrates such as simple sugars, starch, cellulose, as well as diverse organic waste materials can be used for biohydrogen production. Various bioreactor types have been used and operated under batch and continuous conditions; substantial increases in hydrogen yields have been achieved through optimum design of the bioreactor and fermentation conditions. This review explores the research work carried out in fermentative hydrogen production using organic compounds as substrates. The review also presents the state of the art in novel molecular strategies to improve the hydrogen production.  相似文献   

14.
The production of hydrogen fuels by using sunlight is an attractive and sustainable solution to the global energy and environmental problems. Platinum (Pt) is known as the most efficient co‐catalyst in hydrogen evolution reaction (HER). However, due to its high‐cost and limited‐reserves, it is highly demanded to explore alternative non‐precious metal co‐catalysts with low‐cost and high efficiency. Transition metal disulfides (TMDs) including molybdenum disulfide and tungsten disulfide have been regarded as promising candidates to replace Pt for HER in recent years. Their unique structural and electronic properties allow them to have many opportunities to be designed as highly efficient co‐catalysts over various photo harvesting semiconductors. Recent progress in TMDs as photo‐cocatalysts in solar hydrogen production field is summarized, focusing on the effect of structural matchability with photoharvesters, band edges tunability, and phase transformation on the improvement of hydrogen production activities. Moreover, recent research efforts toward the TMDs as more energy‐efficient and economical co‐catalysts for HER are highlighted. Finally, this review concludes by critically summarizing both findings and current perspectives, and highlighting crucial issues that should be addressed in future research activities.  相似文献   

15.
国际生物制氢相关研究的知识图谱分析   总被引:2,自引:0,他引:2  
氢气是一种理想的洁净能源。生物制氢技术具有能耗低、环保等优势,是目前国内外研究的热点。从能源和环境角度考虑,发展生物制氢技术都具有重要的意义。通过ISI Web of Knowledge网络数据库检索2000~2008年8月期间生物制氢的相关研究,利用作者共引分析方法,并绘制了知识图谱。该图谱显示出此研究领域存在两大主流学术群体:群体1,其研究焦点为光解水制氢两大类,包括藻类光合制氢和蓝细菌等光合细胞制氢;群体2,其研究聚集在厌氧发酵制氢研究方面,又分为暗发酵制氢和光发酵制氢。其中厌氧发酵制氢的研究人员比较密集,说明这方面的研究是目前该领域的重点。  相似文献   

16.
Hydrogen, the most abundant and lightest element in the universe, has much potential as a future energy source. Hydrogenases catalyse one of the simplest chemical reactions, 2H+ + 2e ? H2, yet their structure is very complex. Biologically, hydrogen can be produced via photosynthetic or fermentative routes. This review provides an overview of microbial production of hydrogen by fermentation (currently the more favourable route) and focuses on biochemical pathways, theoretical hydrogen yields and hydrogenase structure. In addition, several examples of metabolic engineering to enhance fermentative hydrogen production are presented along with some examples of expression of heterologous hydrogenases for enhanced hydrogen production.  相似文献   

17.
Poor hydrogen production performance and low biomass limit the practical application of photo‐fermentation. To improve the immobilization capability of bacteria and hydrogen production performance, activated carbon fibers (ACFs) were modified by acidic, alkaline, and neutral solutions. The modified ACFs were further used in the anaerobic fluidized bed photo‐reactor (AFBPR) to explore its continuous operation characteristics. Results showed that among the three reagents, nitric acid was the most efficient for ACF modification, and the maximum yield and production rate of hydrogen increased between about 33.6% and 65.8% compared to the control. Furthermore, with the optimal influent glutamate concentration (10 mmol L?1) and light intensity (4000 lux), the AFBPR gave efficient and stable performance with hydrogen yield of 2.26 mol H2 mol?1 acetate and hydrogen production rate of 25.8 mL L?1 h?1. The results showed the potential of using the AFBPR with HNO3‐modified ACF carriers for the large‐scale production of bio‐hydrogen.  相似文献   

18.
Fermentative biohydrogen production systems integration   总被引:2,自引:0,他引:2  
Acidogenic fermentation can be used to produce hydrogen from a range of biomass sources. The effluent from this process can be utilised in a number of biological processes enabling further recovery of energy from the biomass. In this review a number of candidate technologies are assessed including conventional methanogenic anaerobic digestion, dark fermentative hydrogen production, photo-fermentation, and bioelectrochemical systems. The principles, benefits and challenges associated with integrating these technologies are discussed, with particular emphasis on integration with fermentative hydrogen production, and the current state of integrative development is presented. The various system configurations for potential integrations presented here may simultaneously permit an increase in the conversion efficiency of biomass to energy, improved adaptability to varying operating conditions, and improved stability. Such integration, while increasing system complexity, may mean that these bioprocesses could be deployed in a wider range of scenarios and be used with a greater range of substrates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号