首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
太白虎凤蝶的生物学与生境研究   总被引:1,自引:0,他引:1  
郭振营  高可  李秀山  张雅林 《生态学报》2014,34(23):6943-6953
太白虎凤蝶Luehdorfia taibai主要分布于太白山南坡的局部地点,是我国特有种,种群数量稀少,并且呈下降趋势。研究了野生状态下该种蝴蝶的生活史、习性、生命表、产卵地需求,并对部分栖息地要素进行了调查分析。分析了濒危原因,提出了保护建议。太白虎凤蝶1年1代,以蛹越冬,蛹期约300d。翌年4月中下旬为成虫羽化盛期,产卵于幼虫寄主植物马蹄香Saruma henryi叶片背面。1—2龄幼虫聚集生活,3龄即扩散,白天藏入枯叶层中躲避天敌,晚上出来取食。老熟虫于枯叶或石缝中化蛹。产卵地多位于海拔1000—1400 m之间,森林郁闭度低于60%,寄主植物密度低于2株/m2,并且伴有较厚的枯叶层,较多石块的环境中。成虫访花、交尾活动和产卵地环境有所不同,多在沟底较为开阔、多蜜源植物的地点。对太白虎凤蝶的保护建议采取适度干扰原则,对栖息地生境定期实施矮林作业、割灌等经营管理措施,保持1个栖息地斑块内有几块较为开阔的林间空地和寄主植物和寄主植物即可。对于人为干扰过重的秦岭南坡地区,需进行人工管理恢复生境,辅以人工繁殖恢复种群数量。此外,应严格限制对太白虎凤蝶卵、幼虫和成虫的大量采集活动。  相似文献   

2.
以野外观察、实验地饲养等方法, 详细记述了中华麝凤蝶 Byasa confusa (Rothschild)各虫态的形态特征、生活史和习性等生物学特性。在南京地区该蝶1 年发生2 代, 幼虫5 龄, 以绵毛马兜铃Aristolochia mollissima 为食, 卵期8-10 d, 幼虫期23-29 d。老熟幼虫在枝条上化蛹。该蝶以蛹滞育越冬。第一代成虫发生高峰期为4 月中旬至5月中旬; 第二代成虫发生高峰期在7 月下旬到9 月上旬, 存在世代重叠现象。  相似文献   

3.
麝凤蝶形态观察及生物学特性   总被引:4,自引:0,他引:4  
麝凤蝶Byasaalcinous(Klug)属鳞翅目凤蝶科 ,分布于我国大部分地区和日本、朝鲜等国 ,寄主植物是马兜铃、木防己。在浙江省 ,该蝶自然条件下 1年可繁殖 3代 ,以蛹越冬。该蝶成虫双翼狭窄、尾突修长 ,飞翔姿态优雅 ,极具观赏性 ,是蝴蝶馆内放飞展出的适宜种类。至目前为止 ,已有国内外学者在麝凤蝶成虫的发生[1] 、形态[3 ,6,7] 、生殖系统[8~ 10 ] 、性信息素[11] 、亚种的杂交[12 ] 和幼虫的饲料[13 ] 及蛹体的滞育[14 ] 等方面有过报道或有一些研究 ,但很少对其人工饲养和繁殖进行研究。为了保护生态环境 ,开发蝴蝶资源…  相似文献   

4.
药用植物是中国西南岩溶地区的重要植物资源之一,昆虫传粉对药用植物的遗传多样性和可持续利用十分重要。本研究对灰绒麝凤蝶( Byasa mencius)开展饲养实验,结合野外定点观察,记录访花、取食、化蛹和羽化等行为和习性,分析实验饲养条件下影响化蛹和羽化的主要因素,探讨人工饲养方法。结果表明,灰绒麝凤蝶对多个科、属的多种药用植物具有访花和传粉行为,在实验室饲养条件下,食料的充沛程度、湿度和饲养方式等直接影响着化蛹和羽化的成功率。该研究可为灰绒麝凤蝶的规模化养殖和蝶类资源的开发提供参考。  相似文献   

5.
麝凤蝶 (Byasa alcinous)为鳞翅目、凤蝶科昆虫 ,分布于中国各地、日本 ,老挝和越南等 ,其成虫外观雅致、美丽 ,素有“大自然花朵”的美称 ,有较大的观赏价值。麝凤蝶因有麝香味而得名 ,香气来自后翅上的灰白色的臀褶 ,羽化不久的雄蝶香味较明显。近年来此蝶的野生资源由于过度采集 ,生态破坏等而有逐渐减少的趋势 ,因此为保护这一资源 ,有计划地开展人工饲养是很必要的 ,并可通过大规模人工饲养来制作蝴蝶工艺品供观赏。1 麝凤蝶的形态特征及生活习性1.1 成虫 其成虫为大型蝶类 ,展翅 82~ 86 mm,双翼狭窄、尾突修长 ,最明显的特征是它…  相似文献   

6.
丝带凤蝶     
正丝带凤蝶(Sericinus montelus)又名马兜铃凤蝶,隶属凤蝶科丝带凤蝶属,分布于中国、朝鲜和日本等。丝带凤蝶翅展42~71 mm,雌雄异型,雌蝶主色调为黑色,雄蝶主色调为白色,但臀角处都有红色斑纹,最引人注目的是尾突细长,使其飞行缓慢而飘逸。在泰山,丝带凤蝶一年5代,通常成虫在  相似文献   

7.
自2009年首次在湖南乌云界国家级自然保护区发现中华虎凤蝶种群以来,在该保护区持续开展了10余年的野外调查监测。通过对中华虎凤蝶湖南种群6个分布点的野外观测数据分析,结果表明中华虎凤蝶湖南种群栖息环境中的植被以禾本科、菊科、蔷薇科、百合科及豆科植物为主,共计有46科96属128种;不同栖息生境中种群数量差异较大,高山灌草丛为中华虎凤蝶湖南种群的主要生境,而梯田生境、乔木林生境中,其种群数量均很低,展现出与低矮芒草丛的保温遮阴特性以及寄主植物的分布密切相关。寄主植物的复壮和围栏的建设对中华虎凤蝶湖南种群的栖息环境起到了明显的保护作用、对其种群数量的增效作用显著。为深入研究中华虎凤蝶湖南种群的生物学和生态学特性提供了基础数据,为中华虎凤蝶湖南种群的保育工作开展奠定了理论基础,也为当地保护区的保护措施优化提供了科学依据。  相似文献   

8.
斑翅肩花蝽Tetraphleps galchanoides Ghauri是铁杉球蚜Adelges tsugae Annand (hemlock woolly adelgid) 的重要天敌昆虫。在云南省兰坪县天生桥林区通过实验室和林间的饲养观察与测定、林间线路调查等方法, 研究了斑翅肩花蝽的生物学特性、生境及食性选择,并描述各虫态形态特征。斑翅肩花蝽在该林区一年发生2代, 无世代重叠, 寿命长。第1代(5月下旬至10月下旬)卵期13.8±1.6 d,若虫期97.6±7.4 d,成虫期55.2±4.7 d;第2代(11月中旬至翌年4月下旬)卵期11.3±1.1 d,若虫期105.7±8.5 d,成虫期60.4±5.3 d。若虫共5龄,以5龄若虫在云南铁杉Tsuga dumosa枝条树皮裂缝下或枯枝落叶层内越冬。雌雄成虫性比8.5∶1,雌雄成虫飞行缓慢,其飞行活动主要受到交尾、产卵、捕食铁杉球蚜补充营养的影响,多在树冠下层活动。该林区的斑翅肩花蝽最适生境选择: 海拔为2 851~2 980 m,云南铁杉密度为13.3~15.5株/100 m、郁闭度为0.61~0.70。以寄主铁杉球蚜及附近常见的冷杉球蚜Aphrastasia pectinatae (Cholodkovsky)、华山松球蚜Pineus armandicola Zhang和落叶松球蚜Adelges laricis Vall为食物进行选择性试验,结果表明,斑翅肩花蝽对这4种球蚜的选择性存在显著差异,最喜好捕食铁杉球蚜,可成为生物防治铁杉球蚜的主要天敌之一。  相似文献   

9.
记述猫蛱蝶Timelaea maculate(Bremer et Gray)各虫态的形态特征、生活史、生活习性以及生境状况。在南京地区该蝶1年发生3代,第1代成虫出现在7月到8月中旬,第2代成虫于9月下旬到10月上旬出现,以3龄幼虫越冬,越冬代翌年5月下旬羽化。在室内饲养的条件下,卵期为5~6d,幼虫共5龄,幼虫期为17~29d,蛹期约为5~6d。寄主植物包括朴树(Celtis sinensis)等榆科朴属植物。成虫主要的访花蜜源植物有:野蔷薇(Rosamultiflora varpraegeri),茅莓(Rubus parvifolius),山莓(Rubus corchorifolius)等。在进行生境调查的基础上,提出相关建议以确保南京地区猫蛱蝶的长期生存。  相似文献   

10.
君主绢蝶的生物学及生境需求   总被引:1,自引:0,他引:1  
在甘肃省永靖县境内通过野外设点观察、样线调查及室内饲养等方法研究了君主绢蝶的生物学特性及其生境需求,分析了其种群趋势及波动的原因,提出了保护措施。(1)君主绢蝶是中国特有种,在甘肃永靖县1年1代,以卵越冬,卵多产于寄主植物灰绿黄堇Corydalis adunca(也是中国特有种)附近的岩石壁上,翌年3月中旬卵孵化。幼虫4龄,平均历期为52d,3下旬至6月下旬都可见到幼虫。蛹期平均为47d。5月初始见其成虫,成虫飞翔迅速,7月中旬至8月中旬为成虫高峰期,至9月下旬仍可见成虫活动。卵期一般为8个月。(2)君主绢蝶在永靖县牙沟生境内是一个优势种群,成虫喜欢飞翔于有裸露岩石的沟谷,其幼虫则生存于阳光充足、气候干燥、有大量寄主植物的阳坡及半阳坡。君主绢蝶与其寄主植物灰绿黄堇的分布范围在中国相一致,二者之间有紧密的协同进化关系。(3)在永靖县和甘南合作市分布的君主绢蝶是两个亚种,在永靖县牙沟地区发生的是君主绢蝶兰州亚种Parnassiusimperator gigas Kotsch,在合作市发生的是君主绢蝶祁连亚种P.imperator regulus(Bryk et Eisner)。(4)极端的异常气候(强降温、霜冻、降雪)是影响君主绢蝶种群数量下降的主要因子,人类活动的干扰是另一个影响君主绢蝶生存的主要威胁。(5)保护措施建议:保护生境和减少人为干扰是两个最主要的促进绢蝶种群恢复的方法;强调对绢蝶种群进行长期监测,并开展生境丧失、气候变化等对绢蝶的影响研究。  相似文献   

11.
There is an immense philosophical literature dealing with the notions of normativity and agency, as well as a sizeable and rapidly growing scientific literature on the topic of autonomous agents. However, there has been very little cross-fertilization between these two literatures. As a result, the philosophical literature tends to assume a somewhat outdated mechanistic image of living things, resulting in a quasi-dualistic picture in which only human beings, or the higher animals, can be normative agents properly speaking. From this perspective, the project of 'naturalizing normativity' becomes almost a contradiction in terms. At the same time, the scientific literature tends to misuse 'normativity,' 'agency,' and related terms, assuming that it is meaningful to ascribe these concepts to 'autonomous agents' conceived of as physical systems whose behavior is to be explained in terms of ordinary physical law. From this perspective, the true depth of the difficulty involved in understanding what makes living systems distinctive qua physical systems becomes occluded. In this essay, I begin the attempt to remedy this situation. After some preliminary discussion of terminology and situating of my project within the contemporary philosophical landscape, I make a distinction between two different aspects of the project of naturalizing normativity: (1) the 'Scope Problem,' which consists in saying how widely in nature our concept of normative agency may properly be applied; and (2) the 'Ground Problem,' which consists in rationalizing the phenomenon of normative agency in terms of the rest of our knowledge of nature. Then, in the remainder of this paper, I argue that the Scope Problem ought to be resolved in favor of attributing normative agency, in the proper sense of those words, to living things as such. The Ground Problem will be discussed in a companion paper at a later time.  相似文献   

12.
13.
14.
15.
No other member of the VEGF (vascular endothelial growth factor) family has been as mysterious as VEGF-B. Notwithstanding its name, VEGF-B can hardly be regarded as a growth factor because growth occurs fairly normally in Vegf-b deficient mice. Moreover, VEGF-B is barely angiogenic under most conditions, although it was expected to be an angiogenic factor for a long time. Under certain conditions, VEGF-B has been shown to be involved in blood vessel growth. Under other conditions, however, VEGF-B can act to inhibit tumor growth and angiogenesis. Given these contradictory findings, the biological function of VEGF-B appears enigmatic. In this review, we summarize recent advances in VEGF-B biology and discuss its multifaceted roles, the underlying mechanisms, and the potential therapeutic implications.  相似文献   

16.
17.
Szöke A  Scott WG  Hajdu J 《FEBS letters》2003,553(1-2):18-20
Living organisms are unique in their ability to generate and replicate ordered systems from disordered components. Generation of order, replication of the individual, and evolution of the species all depend on the successful utilization of external energy derived from chemicals and light. The information for reproduction is encoded in nucleic acids, but evolution depends on a limited variability in replication, and proceeds through the selection of individuals with altered biochemistry. Essentially all biochemistry is catalyzed; therefore, altered biochemistry implies altered or new catalysts. In that sense catalysis is the medium of evolution. We propose that a basic property of enzymes, at least as fundamental as reaction rate enhancement, is to adjust the reaction path by altering and eventually optimizing the reversible interchange of chemical, electrical and mechanical energy among themselves and their reactants.  相似文献   

18.
Water, temperature and life   总被引:3,自引:0,他引:3  
Cold is the fiercest and most widespread enemy of life on earth. Natural cold adaptation and survival are discussed in terms of physicochemical and biochemical water management mechanisms, relying on thermodynamic or kinetic stabilization. Distinctions are drawn between general effects of low temperature (chill) and specific effects of freezing. Freeze tolerance is a misnomer because tolerance does not extend to the cell fluids. Freezing is confined to the extracellular spaces where it acts as a means of protecting the cytoplasm against freezing injury. Freeze resistance depends on the phenomenon of undercooling, a survival mechanism that relies on the long-term maintenance of a thermodynamically highly unstable state. Correct water management involves many factors, among them the control of membrane composition and transmembrane osmotic equilibrium, the biosynthesis of compounds able to afford protection against injury through freeze desiccation and the availability (or inactivation) of biogenic ice nucleation catalysts.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号