首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 93 毫秒
1.
底栖动物对红树林生态系统的影响及生态学意义   总被引:2,自引:0,他引:2  
底栖动物是红树林生态系统的重要组成部分。本文总结了近年来国内外红树林底栖动物的生物多样性、分布模式及其影响因素的研究进展,并从以下5个方面阐述了底栖动物(尤其是相手蟹)对红树林生态系统的影响:1)维持系统初级生产;2)丰富系统有机物生产;3)影响红树植物生长;4)降低幼苗竞争压力;5)改变沉积物性质。除传统的群落结构、生物多样性和个体生物学研究外,目前红树林底栖动物生态学的研究正逐步向红树林沙蟹等其他海洋无脊椎动物的种间关系、底栖生物区系与栖息地间相互关系研究发展。有必要重新认识蟹类的生物扰动对红树林更新和红树林生态系统能量流动的积极意义。  相似文献   

2.
高宇  林光辉 《生物多样性》2018,26(11):1223-137
藻类是红树林生态系统重要的生物类群, 根据生态习性可分为浮游植物、底栖微藻和大型藻类三个生态类群, 它们在红树林生态系统生物多样性、初级生产、元素循环等方面起着重要作用。但在红树林生态系统中, 关注重点多集中在红树植物和动物, 对其中的藻类重视不够, 且多数研究集中在近20年以及亚洲的红树林区。事实上, 红树林生态系统藻类非常丰富, 其多样性研究有助于深入揭示红树林生态系统的结构与功能。本文介绍了红树林生态系统藻类的组成类群及其重要性, 重点对红树林区浮游植物、底栖硅藻和大型海藻的种类组成、地理分布及其与初级生产力、水质污染、元素循环、碳库形成等生态过程中的作用的研究动态和进展等进行了总结。根据已有研究, 红树林区浮游植物和底栖硅藻的种类数一般为几十到上百种, 其中硅藻在种类和数量上都占绝对优势, 它们是重要的初级生产者、饵料生物和水质污染指示生物; 红树林区底栖大型藻类主要由红藻、绿藻、褐藻、蓝藻组成, 绿藻的种类较多, 红藻在数量上占优势; 藻类是红树林湿地碳库的重要贡献者, 在红树林湿地生态系统碳汇和碳循环中起重要作用。红树林生态系统是个高度动态和异质的系统, 今后应加强红树林藻类多样性的长周期、大尺度变化及不同生境藻类的综合研究, 关注大陆径流和潮汐对藻类多样性和蓝碳的影响, 借助沉积物藻类记录, 探明红树林区藻类的长周期变化, 反演气候变化和人类活动对红树林生态系统的影响过程和机制。  相似文献   

3.
红树林凋落物生产及其归宿   总被引:1,自引:0,他引:1  
陈雅萍  叶勇 《生态学杂志》2013,32(1):204-209
红树林具有很高的凋落物生产量,其生产量受到纬度、潮汐、海水盐度以及气象参数等多方面因素的影响,并且表现出明显的季节性变化规律.红树林凋落物有4条主要归宿:一部分被底栖动物摄食,主要是蟹类和腹足类;一部分被微生物直接分解;还有一部分以可溶性有机物或是以植物组织的形式输出到毗邻生态系统;余下的则以难分解的或是合成物质的形式进入到红树林底质.国内关于红树林凋落物的研究很多只从定性的角度揭示红树林凋落物的归宿,而缺少定量的实验研究,因而对凋落物各归宿的相对重要性缺乏正确认识.以前的一些研究忽视了底栖动物的作用,未来的研究应该更加注重红树林生态系统的开放性,定量研究凋落物的归宿,关注底栖生物在红树林凋落物周转过程中的作用,本文期待为正确揭示红树林凋落物的真实归宿提供思路.  相似文献   

4.
茅埏岛不同生境大型底栖动物生物多样性   总被引:2,自引:0,他引:2  
2012年11月—2013年10月,对浙江台州茅埏岛不同生境下的大型底栖动物进行了4次取样调查,比较了红树林、互花米草和光滩生境下大型底栖动物的生物多样性及季节变化。共检出大型底栖动物48种,隶属8门9纲28科,其中软体动物、节肢动物和环节动物占总物种数的83.3%。用定量取样的密度数据计算大型底栖动物的Shannon指数、Pielou指数、Margalef指数、Simpson指数和G-F多样性指数,结果表明:互花米草生境在物种种数和栖息密度上均低于光滩和红树林生境,物种种数在季节上春夏两季高于秋冬两季;从Shannon指数和G-F多样性指数上看,红树林生境下大型底栖动物的多样性高于光滩与互花米草生境;红树林间,红树幼林大型底栖动物物种多样性低于6年生和8年生红树林,而科属多样性高于后两者。生境和季节是影响大型底栖动物分布的重要因素。  相似文献   

5.
陈国贵  王文卿  谷宣  洪伟  林宇枫  王瑁 《生态学报》2021,41(11):4310-4317
在城市化的背景下,探明不同大型底栖动物群落对植物群落变化的响应,对红树林生态系统的健康评价和退化生态系统的修复具有重要意义。以福建漳江口国家级红树林自然保护区为研究对象,揭示红树植物群落周转对不同大型底栖动物群落结构(蟹类和软体动物)的影响,并分析其与环境参数的关联性。结果表明:在1.6 km的地理尺度上,漳江口红树林湿地的环境变化较大,表现出7.19个环境梯度。在此地理尺度的环境梯度上,红树植物群落由5种红树植物组成,其平均周转率为76%;软体动物群落由12种软体动物以模块化和非随机的方式聚集,其平均周转率为83%,并随红树植物群落周转出现显著非线性增加,盐度和老鼠簕(Acanthus ilicifolius)周转是其主要影响因素;蟹类群落则由20种蟹类以更高的模块化和非随机的方式分散,平均周转率为89%,并随红树植物群落周转而呈线性增加,主要受pH和白骨壤(Avicennia marina)周转的影响。研究揭示了大型底栖动物与植物群落和环境之间的关系,为城市化背景下红树林生态系统的保护和恢复提供基础资料。  相似文献   

6.
红树林植被对大型底栖动物群落的影响   总被引:4,自引:0,他引:4  
陈光程  余丹  叶勇  陈彬 《生态学报》2013,33(2):327-336
大型底栖动物是红树林生态系统的重要组成部分,从红树林大型底栖动物种类、红树林与其周边生境大型底栖动物群落的比较,以及生境变化对动物群落的影响等方面阐述了红树林植被与大型底栖动物群落的关系.从物种数量上看,软体动物和甲壳类动物构成了红树林大型底栖动物的主要部分.影响大型底栖动物分布的环境因素包括海水盐度、潮位和土壤特性等,但在小范围区域,林内动物的分布更多地与红树林植被特性和潮位有关.因此,由于红树林植被破坏或者恢复引起的生境变化,将导致大型底栖动物群落和常见物种种群的变化,尤其对底上动物影响明显;随着人工恢复红树林的发育,林内底栖动物的多样性相应增加,优势种也发生变化.相比位于相同潮位的无植被滩涂,红树林可促进潮间带生物多样性.  相似文献   

7.
广西英罗港红树林区滩涂和光滩潮水中大型底栖动物和游泳动物曾很丰富。近4年来由于海鲜价格不断提高,林区的人为滥捕已使大型底栖动物和游泳动物的数量分别下降了约60%和80%。捕获方式有挖掘滩涂底栖动物,在红树林光滩潮水和林内潮沟进行网捕、炸鱼和毒鱼,网眼小至0.25 cm。传统的捕获萎缩了生态食物网的通量,破碎了生境,威胁着种群的繁衍。由于红树林区的渔业多少是当地群众的生计,完全封闭滩涂进行保育目前不可能。为此建议对英罗港红树林区滩涂施行封滩轮育,同时加强公众教育。  相似文献   

8.
互花米草(Spartina alterniflora)已经大面积入侵并威胁我国滨海湿地生态系统。利用红树植物替代法控制互花米草入侵的生态修复模式已得到广泛关注。本研究选取浙江温州鳌江口红树植物秋茄(Kandelia obovata)替代互花米草的生态修复区,在3年修复期前后,对修复区和对照区进行植物群落结构和大型底栖动物群落多样性监测,结合沉积物质量与水质变化监测,对生态修复的效果进行评价。结果表明:生态修复区的秋茄群落虽结构单一、但生长良好;红树林生境大型底栖动物物种多样性指数为0~2.055;而在互花米草生境中为1.053~2.805,说明对大型底栖动物而言互花米草生境的生态环境状况优于红树林生境。这可能是由于恢复的早期阶段,秋茄树龄小且对水质污染的改善作用不显著,其大型底栖动物的种类偏少。本研究是红树林高纬度分布区生态替代法控制互花米草的典型案例;随着植株的生长,秋茄群落的生态效益将进一步显现。  相似文献   

9.
深圳湾不同生境湿地大型底栖动物次级生产力的比较研究   总被引:3,自引:0,他引:3  
周福芳  史秀华  邱国玉  徐华林 《生态学报》2012,32(20):6511-6519
以深圳湾红树林为例,于2010年1—12月每月1次对红树林和3种对照生境(芦苇鱼塘,基围鱼塘和光滩)的大型底栖动物进行了采样调查,并对其次级生产力、P/B值(次级生产力与生物量的比值)、优势种和生物多样性进行了计算与分析。结果表明,不同生境大型底栖动物群落次级生产力和P/B值差异明显,芦苇鱼塘、基围鱼塘、光滩和红树林生境的次级生产力分别为:6.81、147.50、74.70和105.78 g.m-.2a-1;P/B值分别为:1.10、1.53、1.41和3.58 a-1。红树林生境的次级生产力较高,仅次于基围鱼塘,P/B值显著高于其他3种生境,周转速率最快。结合大型底栖动物优势种和生物多样性的季节变化分析表明,红树林生境大型底栖动物生物多样性最丰富,生态系统抵抗力和恢复力最高,生态系统最稳定。由此说明城市化地区红树林生境对大型底栖动物周转速率和物种多样性有明显促进作用,可以增加生态系统营养的保持力和生态系统的稳定性,对于缓解城市化对湿地生态系统造成的威胁具有重要作用。  相似文献   

10.
福建红树林湿地鸟类区系研究   总被引:16,自引:4,他引:12  
红树林湿地是热带、亚热带海岸带的重要湿地类型。由于红树林是自然辅助供能的高生产率的生态系统 ,具有高光合率、高呼吸率和高归还率的三高特点 ,为红树林区底栖动物的生活提供了能量来源 ,丰富的底栖动物又为鸟类等高等动物提供了充足的饵料来源。红树林湿地特殊的环境特点 ,使之成为咸淡水交迭的环境下生存的动植物、微生物丰富的基因库[10 ] 。因此 ,红树林区域在生物多样性研究中具有重要价值。在香港米埔红树林保护区 ,鸟类学家对当地鸟类的迁徙和生态进行了 30多年的研究[15,16 ] ,2 0世纪 80年代后对广东、广西、海南等地主要红树…  相似文献   

11.
The habitat function of mangroves for terrestrial and marine fauna: A review   总被引:12,自引:10,他引:2  
Mangroves are defined by the presence of trees that mainly occur in the intertidal zone, between land and sea, in the (sub) tropics. The intertidal zone is characterised by highly variable environmental factors, such as temperature, sedimentation and tidal currents. The aerial roots of mangroves partly stabilise this environment and provide a substratum on which many species of plants and animals live. Above the water, the mangrove trees and canopy provide important habitat for a wide range of species. These include birds, insects, mammals and reptiles. Below the water, the mangrove roots are overgrown by epibionts such as tunicates, sponges, algae, and bivalves. The soft substratum in the mangroves forms habitat for various infaunal and epifaunal species, while the space between roots provides shelter and food for motile fauna such as prawns, crabs and fishes. Mangrove litter is transformed into detritus, which partly supports the mangrove food web. Plankton, epiphytic algae and microphytobenthos also form an important basis for the mangrove food web. Due to the high abundance of food and shelter, and low predation pressure, mangroves form an ideal habitat for a variety of animal species, during part or all of their life cycles. As such, mangroves may function as nursery habitats for (commercially important) crab, prawn and fish species, and support offshore fish populations and fisheries. Evidence for linkages between mangroves and offshore habitats by animal migrations is still scarce, but highly needed for management and conservation purposes. Here, we firstly reviewed the habitat function of mangroves by common taxa of terrestrial and marine animals. Secondly, we reviewed the literature with regard to the degree of interlinkage between mangroves and adjacent habitats, a research area which has received increasing attention in the last decade. Finally, we reviewed current insights into the degree to which mangrove litter fuels the mangrove food web, since this has been the subject of long-standing debate.  相似文献   

12.
Why do juvenile fish utilise mangrove habitats?   总被引:1,自引:0,他引:1  
Three hypotheses to discern the strong positive association between juvenile fish and mangrove habitat were tested with field and laboratory experiments. Artificial mangrove structure in the field attracted slightly more juvenile fish than areas without structure. Artificial structure left to accumulate fouling algae attracted four-times the total number of juvenile fish than areas without structure or areas with clean structure. Community composition of fish attracted to structure with fouling algae was different when compared with areas with no structure or clean structure; five species were attracted by structure with fouling algae whilst two species were associated with structure regardless of fouling algae. Algae were linked to increased food availability and it is suggested that this is an important selection criteria for some species. Other species were apparently attracted to structure for different reasons, and provision of shelter appears to be important. Predation pressure influenced habitat choice in small juvenile fish in laboratory experiments. In the absence of predators, small juveniles of four out of five species avoided shelter but when predators were introduced all species actively sought shelter. Large fish were apparently less vulnerable to predators and did not seek shelter when predators were added to their tank. Feeding rate was increased in the mangrove habitat for small and medium-sized fish compared with seagrass beds and mudflats indicating increased food availability or foraging efficiency within this habitat. Larger fish fed more effectively on the mudflats with an increased feeding rate in this habitat compared with adjacent habitats. The most important aspect of the mangrove habitat for small juvenile fish is the complex structure that provides maximum food availability and minimises the incidence of predation. As fish grow a shift in habitat from mangroves to mudflat is a response to changes in diet, foraging efficiency and vulnerability to predators.  相似文献   

13.
黄振远  王瑁  王文卿 《生态学报》2007,27(3):1206-1216
传统上认为红树林输出的有机质产生巨大的能流,支持了巨大的河口和近岸水域生态系统的次级生产。但能量标签技术的研究结果却显示红树林输出的有机质的作用并没有如此巨大。用红树碎屑难消化特性来解释此现象,此外数学模型模拟分析发现潮汐的稀释作用也可以解释这种现象。但这两者都不能解释,在其他初级生产者稀少时,红树材输出的有机质可以被大量利用的现象。在有红树林的河口和近海岸水域生态系统中,藻类等非红树初级生产者具有比红树植物更高的初级生产力,而且更容易被动物获得和消化。可以认为是藻类等巨大初级生产力的竞争作用导致红树初级生产在消费者组织中很难被发现,如此上面提到的难题就能得到很好的解决。此外能量标签技术检测出的是红树的初级生产在消费者组织中的相对比率,不是绝对数量值,从此角度看,能量标签技术的结果与传统观点不是矛盾而是互相补充的关系。由此推测红树的初级生产应该还是被消费者所利用,只是它们在消费者初级营养来源组成中占的比例并不大,但其绝对数量并不少。这与传统观点认为的红树的初级生产被大量利用,支撑了具有巨大的次级生产稍有不同。此外,能量标签技术在红树林生态系统中的适用性尚未检验;计算食物组成的数学工具不是很完善;实验设计上考虑的不够全面;对定量研究有一定的影响。  相似文献   

14.
Coastal ecosystems are energetically connected through passive transport of nutrients but also by migrations of motile organisms. Mangroves are highly productive tropical ecosystems that replenish offshore populations of many species, but we know little about the degree to which this production is fuelled by prey from mangroves, especially in the cases in which mangroves are only accessible at high tide. Different results have been obtained on the importance of mangroves as feeding habitats, confounded by differences in species composition, seascape configuration, and methodology. In the present study, we took a more holistic approach by exploring reliance by fishes on mangroves as a feeding habitat at multiple ecological levels: from individuals to species to communities in mangrove ecosystems from across the globe, using a stable isotope approach. A two end-member mixing model showed a wide range (12–72%) in degree of reliance on mangrove food sources by fishes from different studies across the globe. However, analyzed at the levels of individual fish and species, reliance was low (for example, <25% for 55% of the species worldwide, or <50% for 85% of species, respectively) even though they were collected from sites that differed in geographical location, tidal regime, seascape structure, and species composition. The high fisheries productivity of mangroves appears to be energetically supported largely by food sources from adjacent habitats. In light of the ongoing rapid demise and fragmentation of mangrove and adjacent ecosystems, loss of ecosystem connectivity is likely to affect the productivity and functioning of tropical coastal ecosystems and the services they provide.  相似文献   

15.
Stable carbon and nitrogen isotope ratios were used to elucidate primary carbon sources and trophic relationships of the fish and shrimp community in the Klong Ngao mangrove ecosystem, southern Thailand. There were no significant differences in isotopic compositions of biota between mangrove and offshore sites (Welch–Aspin test). The δ15N values of eight fish species and two shrimp species at both sites were also not significantly different by the test, meaning that at both sites they feed on the same diets due to the discharge of large quantities of mangrove sediments. The δ15N isotopic enrichment of consumers suggested that there are four trophic levels in the Klong Ngao food web, with at least two fish species capable of switching feeding strategies and thus altering their apparent trophic positions. Phytoplankton culture experiments indicated that mangrove-derived sediments could play an important role in stimulating phytoplankton growth for low turbidity offshore areas, thus providing an alternate food source. The isotopic associations among sources and consumers indicated that mangroves were the major carbon source supporting aquatic food webs in the Klong Ngao ecosystem.  相似文献   

16.
Benthic structure plays an important role as shelter and feeding habitat for demersal fauna. While many studies have investigated the relationship between structural complexity of aquatic vegetation and the number of species or abundance of motile organisms, little is known of the attractiveness of submerged mangrove roots. We tested the importance of various root attributes in attracting fish species in a field experiment using different artificial mangrove units (AMUs) with PVC pipes mimicking roots to exclude interaction with other environmental and biotic factors. We manipulated length, vertical orientation, and three-dimensional structural complexity of root mimics in the AMUs to explore their effects on the fish community variables: fish abundance, number of species and community composition. Pipe length and three-dimensional structure did not have an effect on fish community variables. Vertical pipe orientation had a significant effect and AMUs with standing pipes showed higher total fish abundances and number of species than AMUs with hanging pipes. Also community composition differed greatly between AMUs with standing versus hanging pipes. At species level, demersal fish species mainly occupied AMUs with standing pipes and occurred only at very low abundances when hanging pipes dominated in the AMUs; in contrast, the semi-pelagic swimmer Sphyraena barracuda showed a trend of higher abundance in AMUs with mainly hanging pipes. When analyzed across all AMUs, fish abundances of demersal as well as semi-pelagic species decreased significantly with increasing interspatial pipe distance among AMUs, suggesting that distance to refuge may be the underlying mechanism for the observed patterns. The above findings are important in the context of the worldwide degradation of mangroves, because human alteration to mangrove vegetation affects its structure and thus composition and size of fish communities.  相似文献   

17.
Identification of critical life-stage habitats is key to successful conservation efforts. Juveniles of some species show great flexibility in habitat use while other species rely heavily on a restricted number of juvenile habitats for protection and food. Considering the rapid degradation of coastal marine habitats worldwide, it is important to evaluate which species are more susceptible to loss of juvenile nursery habitats and how this differs across large biogeographic regions. Here we used a meta-analysis approach to investigate habitat use by juvenile reef fish species in tropical coastal ecosystems across the globe. Densities of juvenile fish species were compared among mangrove, seagrass and coral reef habitats. In the Caribbean, the majority of species showed significantly higher juvenile densities in mangroves as compared to seagrass beds and coral reefs, while for the Indo-Pacific region seagrass beds harbored the highest overall densities. Further analysis indicated that differences in tidal amplitude, irrespective of biogeographic region, appeared to be the major driver for this phenomenon. In addition, juvenile reef fish use of mangroves increased with increasing water salinity. In the Caribbean, species of specific families (e.g. Lutjanidae, Haemulidae) showed a higher reliance on mangroves or seagrass beds as juvenile habitats than other species, whereas in the Indo-Pacific family-specific trends of juvenile habitat utilization were less apparent. The findings of this study highlight the importance of incorporating region-specific tidal inundation regimes into marine spatial conservation planning and ecosystem based management. Furthermore, the significant role of water salinity and tidal access as drivers of mangrove fish habitat use implies that changes in seawater level and rainfall due to climate change may have important effects on how juvenile reef fish use nearshore seascapes in the future.  相似文献   

18.
Understanding the interconnectivity of organisms among different habitats is a key requirement for generating effective management plans in coastal ecosystems, particularly when determining component habitat structures in marine protected areas. To elucidate the patterns of habitat use by fishes among coral, seagrass, and mangrove habitats, and between natural and transplanted mangroves, visual censuses were conducted semiannually at two sites in the Philippines during September and March 2010–2012. In total, 265 species and 15,930 individuals were recorded. Species richness and abundance of fishes were significantly higher in coral reefs (234 species, 12,306 individuals) than in seagrass (38 species, 1,198 individuals) and mangrove (47 species, 2,426 individuals) habitats. Similarity tests revealed a highly significant difference among the three habitats. Fishes exhibited two different strategies for habitat use, inhabiting either a single (85.6% of recorded species) or several habitats (14.4%). Some fish that utilized multiple habitats, such as Lutjanus monostigma and Parupeneus barberinus, showed possible ontogenetic habitat shifts from mangroves and/or seagrass habitats to coral reefs. Moreover, over 20% of commercial fish species used multiple habitats, highlighting the importance of including different habitat types within marine protected areas to achieve efficient and effective resource management. Neither species richness nor abundance of fishes significantly differed between natural and transplanted mangroves. In addition, 14 fish species were recorded in a 20-year-old transplanted mangrove area, and over 90% of these species used multiple habitats, further demonstrating the key role of transplanted mangroves as a reef fish habitat in this region.  相似文献   

19.
This study aimed to characterize the food intake by the fish assemblage inhabiting aquatic macrophytes stands, evaluating the changes in food availability among the periods of the hydrologic cycle and the trophic responses of the fish assemblage along with food availability. Fish sampling was conducted in stands of aquatic macrophytes (predominantly Paspalum repens, Poaceae) along banks of the Trombetas River during the four hydrologic periods (rising, high, receding, and low water level) that represent different phenological conditions of the habitat. The food consumption by the fish assemblage was analyzed for 41 species with stomach contents. The assemblage fed mainly on aquatic insects, periphytic algae and detritus. Food availability analysis showed that food resources changed among periods. Fifteen species were present in more than one period and most of those species showed dietary changes along with the hydrologic cycle, feeding mainly on invertebrates in the rising water period and periphytic algae and detritus in receding and low water periods. Only four species showed sufficient numbers to be analyzed in relation to diet and food availability along the at least three hydrologic periods, two of which showed a positive correlation between diet and food availability for three of the four periods; the other two species did not show this correlation, and presented omnivorous habits. In all cases, the selectivity values for the most important food items were near zero, indicating that intake was not motivated by feeding preference. Our results suggest that both trophic plasticity and omnivorous diets are important adaptations for species that inhabit temporally variable habitats such as aquatic macrophytes stands.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号