首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The substantial complexity and vast dynamic range of protein abundance in biological fluids, notably serum and plasma, present a formidable challenge for comprehensive protein analysis. Integration of multiple technologies is required to achieve high-resolution and high-sensitivity proteomics analysis of biological fluids. We have implemented an orthogonal three-dimensional intact-protein analysis system (IPAS), coupled with protein tagging and immunodepletion of abundant proteins, to quantitatively profile the human plasma proteome. Following immunodepletion, plasma proteins in each of paired samples are concentrated and labeled with a different Cy dye, before mixing. Proteins are subsequently separated in three dimensions according to their charge, hydrophobicity, and molecular mass. Differences in the abundance of resolved proteins are determined based on Cy dye ratios. We have applied this strategy to profile the plasma proteome for changes that occur with acute graft-versus-host disease (GVHD), following allogeneic bone marrow transplantation (BMT). Using capillary HPLC ESI Q-TOF MS, we identified 75 proteins in the micromolar to femtomolar range that exhibited quantitative differences between the pre- and post-GVHD samples. These proteins included serum amyloid A, apolipoproteins A-I/A-IV, and complement C3 that are well-known acute-phase reactants likely reflecting the post-BMT inflammatory state. In addition, we identified some potentially interesting immunologically relevant molecules including vitamin D-binding protein, fetuin, vitronectin, proline-rich protein 3 and 4, integrin-alpha, and leukocyte antigen CD97. IPAS provides a combination of comprehensive profiling and quantitative analysis, with a substantial dynamic range, for disease-related applications.  相似文献   

2.
In-depth analysis of the serum and plasma proteomes by mass spectrometry is challenged by the vast dynamic range of protein abundance and substantial complexity. There is merit in reducing complexity through fractionation to facilitate mass spectrometry analysis of low-abundance proteins. However, fractionation reduces throughput and has the potential of diluting individual proteins or inducing their loss. Here, we have investigated the contribution of extensive fractionation of intact proteins to depth of analysis. Pooled serum depleted of abundant proteins was fractionated by an orthogonal two-dimensional system consisting of anion-exchange and reversed-phase chromatography. The resulting protein fractions were aliquotted; one aliquot was analyzed by shotgun LC-MS/MS, and another was further resolved into protein bands in a third dimension using SDS-PAGE. Individual gel bands were excised and subjected to in situ digestion and mass spectrometry. We demonstrate that increased fractionation results in increased depth of analysis based on total number of proteins identified in serum and based on representation in individual fractions of specific proteins identified in gel bands following a third-dimension SDS gel analysis. An intact protein analysis system (IPAS) based on a two-dimensional plasma fractionation schema was implemented that resulted in identification of 1662 proteins with high confidence with representation of protein isoforms that differed in their chromatographic mobility. Further increase in depth of analysis was accomplished by repeat analysis of aliquots from the same set of two-dimensional fractions resulting in overall identification of 2254 proteins. We conclude that substantial depth of analysis of proteins from milliliter quantities of serum or plasma and detection of isoforms are achieved with depletion of abundant proteins followed by two-dimensional protein fractionation and MS analysis of individual fractions.  相似文献   

3.
激素型肾阳虚动物肝线粒体蛋白质组与能量代谢相关性   总被引:11,自引:0,他引:11  
应用凝胶内差异显示电泳技术研究肾阳虚大鼠肝线粒体蛋白质组,并从肝线粒体蛋白质组角度阐述肾阳虚与能量代谢的关系.8个分别来自于肾阳虚大鼠和正常大鼠的肝线粒体蛋白质样品(各4个)分别用荧光染料Cy3、Cy5标记,以及8个样品等量混合物用Cy2标记作为内标,每一Cy3、Cy5标记样品与Cy2标记的内标等量混合后在同一胶中进行电泳分离,经不同光激发后扫描得到不同样品的蛋白质组图谱.经DeCyder软件结合内标分析,以肾阳虚组动物与正常组动物肝线粒体蛋白质相差1.2倍以上的蛋白作为差异蛋白,实验共获得16个差异蛋白质,经质谱测定和与蛋白质文库比对,鉴定11个蛋白质.其中,肾阳虚动物热休克蛋白60和70、肌氨酸脱氢酶、氨甲酰磷酸合成酶、亚硫酸盐氧化酶、ATP合酶、醛脱氢酶和NADH脱氢酶表达量增加,而丙酮酸脱氢酶、α酮戊二酸脱氢酶、脂酰辅酶A脱氢酶和鸟氨酸氨基转移酶表达量降低.实验表明,肾阳虚动物能量代谢相关酶的变化与肾阳虚的临床虚寒症状有关.  相似文献   

4.
目的:建立具有高分辨率和稳定性的乳腺增生组织蛋白质组的双向电泳图谱,并对其进行差异蛋白质组分析。方法:取乳腺增生病患者增生部位及正常部位乳腺组织,匀浆提取乳腺组织总蛋白,分别用Cy3或Cy5标记,每一对Cy3和Cy5标记样品都与一个Cy2标记的内标等量混合,上样于同一胶中进行电泳分离,经不同光激发下扫描得到不同样品的蛋白质组图谱。所获得的图谱经DeCyder软件进行分析。结果:在乳腺增生病增生的组织中,有12个蛋白质表达水平显著增加,另外3个蛋白质表达水平显著下降。结论:利用DIGE技术可以作胶内时比分析,也可以根据内标消除胶与胶之间的差异,提高统计的可信度;分析所得的15个差异蛋白质可能与乳腺增生疾病的发生与发展有关。  相似文献   

5.
Two-dimensional difference gel electrophoresis (2-D DIGE) coupled with mass spectrometry (MS) was used to investigate tumor-specific changes in the proteome of human colorectal cancers and adjacent normal mucosa. For each of six patients with different stages of colon cancer, Cy5-labeled proteins isolated from tumor tissue were combined with Cy3-labeled proteins isolated from neighboring normal mucosa and separated on the same 2-D gel along with a Cy2-labeled mixture of all 12 normal/tumor samples as an internal standard. Over 1500 protein spot-features were analyzed in each paired normal/tumor comparison, and using DIGE technology with the mixed-sample internal standard, statistically significant quantitative comparisons of each protein abundance change could be made across multiple samples simultaneously without interference due to gel-to-gel variation. Matrix-assisted laser desorption/ionization-time of flight (MALDI-TOF) and tandem (TOF/TOF) MS provided sensitive and accurate mass spectral data for database interrogation, resulting in the identification of 52 unique proteins (including redundancies due to proteolysis and post-translationally modified isoforms) that were changing in abundance across the cohort. Without the benefit of the Cy2-labeled 12 sample mixture internal standard, 42 of these proteins would have been overlooked due to the large degree of variation inherent between normal and tumor samples.  相似文献   

6.
The reproducibility of conventional two-dimensional (2D) gel electrophoresis can be improved using differential in-gel electrophoresis (DIGE), a new emerging technology for proteomic analysis. In DIGE, two pools of proteins are labeled with 1-(5-carboxypentyl)-1'-propylindocarbocyanine halide (Cy3) N-hydroxy-succinimidyl ester and 1-(5-carboxypentyl)-1'-methylindodi-carbocyanine halide (Cy5) N-hydroxysuccinimidyl ester fluorescent dyes, respectively. The labeled proteins are mixed and separated in the same 2D gel. 2D DIGE was applied to quantify the differences in protein expression between laser capture microdissection-procured esophageal carcinoma cells and normal epithelial cells and to define cancer-specific and normal-specific protein markers. Analysis of the 2D images from protein lysates of approximately 250,000 cancer cells and normal cells identified 1038 protein spots in cancer cell lysates and 1088 protein spots in normal cell lysates. Of the detected proteins, 58 spots were up-regulated by >3-fold and 107 were down-regulated by >3-fold in cancer cells. In addition to previously identified down-regulated protein annexin I, tumor rejection antigen (gp96) was found up-regulated in esophageal squamous cell cancer. Global quantification of protein expression between laser capture-microdissected patient-matched cancer cells and normal cells using 2D DIGE in combination with mass spectrometry is a powerful tool for the molecular characterization of cancer progression and identification of cancer-specific protein markers.  相似文献   

7.
Reported in this work is the development and application of a high sensitivity mass spectrometric immunoassay for the quantitative analysis of C-reactive protein from human plasma. Multiplexed affinity retrieval devices and methodology were developed to simultaneously target retinol binding protein, C-reactive protein, serum amyloid P component, as well as an added exogenous internal reference standard (staphylococcal enterotoxin B) for subsequent MALDI-TOF MS analysis. This approach allows for semiquantitative analysis of both retinol binding protein and serum amyloid P component while performing absolute quantitative measurements of C-reactive protein. The ability to qualitatively differentiate between all three human proteins and their associated variants is also maintained. Standard curve, QC, and human plasma samples were analyzed in a high throughput manner, which performed with a CV < 15%. The resultant human plasma sample C-reactive protein quantitative measurements were then compared to those achieved with a high sensitivity latex immunoturbidimetric assay.  相似文献   

8.
Western blotting is a widely used method for analyzing specific target proteins in complex protein samples. Housekeeping proteins are often used for normalization to correct for uneven sample loads, but these require careful validation since expression levels may vary with cell type and treatment. We present a new, more reliable method for normalization using Cy5-prelabeled total protein as a loading control. We used a prelabeling protocol based on Cy5 N-hydroxysuccinimide ester labeling that produces a linear signal response. We obtained a low coefficient of variation (CV) of 7% between the ratio of extracellular signal-regulated kinase (ERK1/2) target to Cy5 total protein control signals over the whole loading range from 2.5 to 20.0 μg of Chinese hamster ovary cell lysate protein. Corresponding experiments using actin or tubulin as controls for normalization resulted in CVs of 13 and 18%, respectively. Glyceraldehyde-3-phosphate dehydrogenase did not produce a proportional signal and was not suitable for normalization in these cells. A comparison of ERK1/2 signals from labeled and unlabeled samples showed that Cy5 prelabeling did not affect antibody binding. By using total protein normalization we analyzed PP2A and Smad2/3 levels with high confidence.  相似文献   

9.
Membranous nephropathy (MN), a common cause of idiopathic nephrotic syndrome in adults, remains a potentially devastating problem worldwide. At present, there is no reliable noninvasive method for predicting and/or monitoring this glomerular disease, and its pathophysiology remains poorly understood. In the present study, the urinary proteome profile of rats after 10 days of an induction of passive Heymann nephritis (PHN), which resembles human MN, was compared to that of the baseline (control) urine prior to the induction of PHN by anti-Fx1A injection. Each pool of PHN and control urine samples (n = 10 each) was labeled with different fluorescent dyes (Cy3 or Cy5), and equal amounts of the labeled proteins of both pools were resolved in the same 2D gel, together with an internal standard labeled with Cy2. Two-dimensional difference gel electrophoresis revealed a number of protein spots whose expression levels were altered during PHN. Eighteen protein spots with >1.5-fold changes and p < 0.05 were selected for subsequent identification by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. They were successfully identified as serum albumin precursor, alpha-1-antitrypsin, preprohaptoglobin, liver-regeneration-related protein, and transthyretin (which increased during PHN) and E-cadherin, MPP7, tropomyosin beta, kallikrein, and alpha-2u globulin (which decreased in the PHN urine). Among these proteins, the increase in urinary preprohaptoglobin has particularly drawn our attention because of its byproduct, haptoglobin (Hp), which is involved in the protection of tissue damage from hemoglobin-induced oxidative stress. Western blotting and enzyme-linked immunosorbent assay clearly showed a markedly increased level of Hp in the urine, but not in the serum, of the PHN animals. Our findings may lead to a significant advance in the attempt to define a new therapeutic target and/or novel biomarker for human MN.  相似文献   

10.
The proteomic analysis of plasma and serum samples represents a formidable challenge due to the presence of a few highly abundant proteins such as albumin and immunoglobulins. Detection of low abundance protein biomarkers requires therefore either the specific depletion of high abundance proteins with immunoaffinity columns and/or optimized protein fractionation methods based on charge, size or hydrophobicity. Here we describe the depletion of seven abundant rat plasma proteins with an immunoaffinity column with coupled antibodies directed against albumin, IgG, transferrin, IgM, haptoglobin, fibrinogen and alpha1-anti-trypsin. The IgY-R7-LC2 (Beckman Coulter) column showed high specificity for the targeted proteins and was able to efficiently remove most of the albumin, IgG and transferrin from rat plasma samples as judged by Western blot analysis. Depleted rat plasma protein samples were analyzed by SELDI-TOF MS, 2D SDS-PAGE and 2D-LC and compared to non-depleted plasma samples as well as to the abundant protein fraction that was eluted from the immunoaffinity column. Analysis of the depleted plasma protein fraction revealed improved signal to noise ratios, regardless of which proteomic method was applied. However, only a small number of new proteins were observed in the depleted protein fraction. Immunoaffinity depletion of abundant plasma proteins results in the significant dilution of the original sample which complicates subsequent analysis. Most proteomic approaches require specialized sample preparation procedures during which significant losses of less abundant proteins and potential biomarkers can occur. Even though abundant protein depletion reduces the dynamic range of the plasma proteome by about 2-3 orders of magnitude, the difference between medium-abundant and low abundant plasma proteins is still in the range of 7-8 orders of magnitude and beyond the dynamic range of current proteomic technologies. Thus, exploring the plasma proteome in greater detail remains a daunting task.  相似文献   

11.
The technique of fluorescent two-dimensional (2D) difference gel electrophoresis for differential protein expression analysis has been evaluated using a model breast cancer cell system of ErbB-2 overexpression. Labeling of paired cell lysate samples with N-hydroxy succinimidyl ester-derivatives of fluorescent Cy3 and Cy5 dyes for separation on the same 2D gel enabled quantitative, sensitive, and reproducible differential expression analysis of the cell lines. SyproRuby staining was shown to be a highly sensitive and 2D difference gel electrophoresis-compatible method for post-electrophoretic visualization of proteins, which could then be picked and identified by matrix-assisted laser-desorption ionization mass spectroscopy. Indeed, from these experiments, we have identified multiple proteins that are likely to be involved in ErbB-2-mediated transformation. A triple dye labeling methodology was used to identify proteins differentially expressed in the cell system over a time course of growth factor stimulation. A Cy2-labeled pool of samples was used as a standard with all Cy3- and Cy5-labeled sample pairs to facilitate cross-gel quantitative analysis. DeCyder (Amersham Biosciences, Inc.) software was used to distinguish clear statistical differences in protein expression over time and between the cell lines.  相似文献   

12.
This paper describes the use of fluorescence two-dimensional differential in-gel electrophoresis in a multiplex analysis of two distinct proteomes. As a model system, cerebral cortex tissues were analyzed from neurokinin1 receptor knockout (NK(1)R-/-) and wild type (NK(1)R+/+) mice in an attempt to identify molecular pathways involved in the function of this protein. Paired NK(1)R-/- and NK(1)R+/+ samples were labeled with fluorescent Cy3 and Cy5 dyes and electrophoresed on the same two-dimensional gels. Scanning the gels at wavelengths specific for each dye revealed the two different proteomes which were overlaid and the differences in abundance of specific protein spots were determined by the Amersham Biosciences DeCyder Differential In-gel Analysis software. A Cy2-labeled sample pool was co-electrophoresed with all Cy3- and Cy5-labeled sample pairs as an internal standard providing a link for inter-gel comparisons and for more robust statistical analysis of the data. Eight spots were found to be upregulated and two downregulated in the NK(1)R-/- mice compared to NK(1)R+/+ controls. Matrix assisted laser desorption/ionisation-time of flight (MALDI-TOF) mass fingerprinting was used to identify the proteins. The results illustrate the power of this multiplex proteomics technology and illustrate how proteomics can be used to understand gene function.  相似文献   

13.
Liang CR  Leow CK  Neo JC  Tan GS  Lo SL  Lim JW  Seow TK  Lai PB  Chung MC 《Proteomics》2005,5(8):2258-2271
Proteome analysis of human hepatocellular carcinoma tissues was conducted using two-dimensional difference gel electrophoresis coupled with mass spectrometry. Paired samples from the normal and tumor region of resected human liver were labeled with Cy3 and Cy5, respectively while the pooled standard sample was labeled with Cy2. After analysis by the DeCyder software, protein spots that exhibited at least a two-fold difference in intensity were excised for in-gel tryptic digestion and matrix-assisted laser desorption/ionization-time of flight mass spectrometry. A total of 6 and 42 proteins were successfully identified from the well- and poorly-differentiated samples, respectively. The majority of these proteins are related to detoxification/oxidative stress and metabolism. Three down-regulated metabolic enzymes, methionine adenosyltransferase, glycine N-methyltransferase, and betaine-homocysteine S-methyltransferase that are involved in the methylation cycle in the liver are of special interest. Their expression levels, especially, methionine adenosyltransferase, seemed to have a major influence on the level of S-adenosylmethionine (AdoMet), a vital intermediate metabolite required for the proper functioning of the liver. Recent work has shown that chronic deficiency in AdoMet in the liver results in spontaneous development of steatohepatitis and hepatocellular carcinoma, and hence the down-regulation of hepatic methionine adenosyltransferase in our hepatocellular carcinoma samples is in line with this observation. Moreover, when a comparison is made between the differentially expressed proteins from our human hepatocellular carcinoma samples and from the liver tissues of knockout mice deficient in methionine adenosyltransferase, there is a fairly good correlation between them.  相似文献   

14.
Two-dimensional gel electrophoresis (2DE) is a central tool of proteome research, since it allows separation of complex protein mixtures at highest resolution. Quantification of gene expression at the protein level requires sensitive visualization of protein spots over a wide linear range. Two-dimensional difference gel electrophoresis (2D DIGE) is a new fluorescent technique for protein labeling in 2DE gels. Proteins are labeled prior to electrophoresis with fluorescent CyDyes trade mark and differently labeled samples are then co-separated on the same 2DE gel. We evaluated 2D DIGE for detection and quantification of proteins specific for glucose or N-acetylglucosamine metabolism in the marine bacterium Pirellula sp. strain 1. The experiment was based on 10 parallel 2DE gels. Detection and comparison of the protein spots were performed with the DeCyder trade mark software that uses an internal standard to quantify differences in protein abundance with high statistical confidence; 24 proteins differing in abundance by a factor of at least 1.5 (t test value <10(-9)) were identified. For comparison, another experiment was carried out with four SYPRO-Ruby-stained 2DE gels for each of the two growth conditions; image analysis was done with the ImageMaster trade mark 2D Elite software. Sensitivity of the CyDye fluors was evaluated by comparing Cy2, Cy3, Cy5, SYPRO Ruby, silver, and colloidal Coomassie staining. Three replicate gels, each loaded with 50 microg of protein, were run for each stain and the gels were analyzed with the ImageMaster software. Labeling with CyDyes allowed detection of almost as many protein spots as staining with silver or SYPRO Ruby.  相似文献   

15.
Wu CC  Peng PH  Chang YT  Huang YS  Chang KP  Hao SP  Tsang NM  Yeh CT  Chang YS  Yu JS 《Proteomics》2008,8(17):3605-3620
Nasopharyngeal carcinoma (NPC), one of the most common cancers in Southeast Asia, is commonly diagnosed late due to its deep location and vague symptoms. To identify biomarkers for improving NPC diagnosis, we established a proteomic platform for detecting aberrant serum proteins in nude mice bearing NPC xenografts. We first removed the three most abundant proteins from serum samples of tumor-bearing and control mice, and then labeled the samples with different fluorescent cyanine (Cy) dyes. The labeled serum proteins were then mixed equally and fractionated with ion-exchange chromatography followed by SDS-PAGE. Differentially expressed proteins were identified by in-gel tryptic digestion and MALDI-TOF MS. We identified peroxiredoxin 2 (Prx-II) and carbonic anhydrase 2 (CA-II) as being elevated in the xenograft mouse model compared to controls. Western blot analysis confirmed up-regulation of Prx-II and CA-II in plasma from five NPC patients, and ELISA showed that plasma Prx-II levels were significantly higher in NPC patients (n = 84) versus healthy controls (n = 90) (3.03 +/- 4.47 versus 1.90 +/- 2.74 microg/mL, p = 0.047). In conclusion, Cy dye labeling combined with three-dimensional fractionation is a feasible strategy for identifying differentially expressed serum proteins in an NPC xenograft model, and Prx-II may represent a potential NPC biomarker.  相似文献   

16.
Kinetics of superoxide anion generation by the isolated plasma membrane was determined by the rate of formazan formation from XTT in the presence of NADPH or NADH. The plasma membrane was prepared from (control) etiolated maize seedlings grown at 25°C and from (cooled) seedlings incubated at 6°C for the last day. Membrane vesicles from the control plants possessed superoxide-producing activity, and the rate of NADH oxidation was markedly higher than that of NADPH. The low-temperature incubation of the seedlings suppressed the NADPH-dependent activity, whereas the NADH-dependent one slightly increased. The solubilized by dodecyl maltoside (DDM) plasma membranes were separated into multiprotein complexes by high-resolution clear native electrophoresis (hrCN-PAGE). The aim was to find complexes exhibiting the superoxide-producing activity sensitive to inhibition by diphenylene iodonium. Several protein complexes from the plasma membrane capable of superoxide producion in the presence of NADPH or NADH were found. The maximum diphenylene iodonium-sensitive activity was found in the high-molecular weight complex, in which proteins reacting with antibodies against C-terminal peptide of phagocytic oxidase (gp91phox) were detectable. The activity of this complex was lower in the cooled than in the control seedlings and displayed higher affinity to NADPH than to NADH. To search for the cooling-induced changes in the polypeptide content of protein complexes, the two-dimensional difference gel electrophoresis (hrCN/SDS-PAGE) was used. Control and cooled samples, whose lysine had been labeled with fluorescent dyes Cy2 and Cy3, respectively, were separated by this method in one gel. Decrease in a temperature of plant growing affected the protein content of the complex so that some new proteins appeared and several polypeptides disappeared as compared with the control. There were no significant differences between the cooled and control counterparts in the content of proteins detectable with gp91phox antibodies. Therefore, the high-molecular complex containing NADPH oxidase looses proteins under low temperature that may decrease its superoxide-producing activity.  相似文献   

17.
Knowledge of host protein properties is critical for developing purification methods for recombinant proteins from a specific host, or for choosing suitable hosts and targeted expression tissues for a specific recombinant protein. A method to obtain a three-dimensional (3D) map (surface hydrophobicity (SH), isoelectric point (pI), and molecular weight (MW)), of a host's aqueous soluble protein properties was developed. The method consists of hydrophobic partitioning in a PEG 3350 (15.7%)-Na(2)SO(4) (8.9%)-NaCl (3%) aqueous two-phase (ATP) system followed by quantitative, 2D-electrophoretic characterization of the proteins of each equilibrium phase and the original extract. The pI and MW of host proteins were obtained directly through 2D electrophoresis. The partition coefficients of individual proteins were obtained by quantitative matching of protein spots in the top and bottom phase gels and calculating the protein partition coefficients from this information. Correlation of the partition coefficient to a SH scale was established by partitioning several model proteins with known surface hydrophobicities in the same ATP system. The inclusion of the extract gel provided for a spot selection criterion based on satisfactory mass balance closure. The method is illustrated by application to a mixture of model proteins and to complex mixtures, that is, corn germ proteins extracted at pH 7 and pH 4.  相似文献   

18.
In order to discover novel protein markers indicative of disease processes or drug effects, the proteomics technology platform most commonly used consists of high resolution protein separation by two-dimensional electrophoresis (2-DE), mass spectrometric identification of proteins from stained gel spots and a bioinformatic data analysis process supported by statistics. This approach has been more successful in profiling proteins and their disease- or treatment-related quantitative changes in tissue homogenates than in plasma samples. Plasma protein display and quantitation suffer from several disadvantages: very high abundance of a few proteins; high heterogeneity of many proteins resulting in long charge trains; crowding of 2-DE separated protein spots in the molecular mass range between 45-80 kD and in the isoelectric point range between 4.5 and 6. Therefore, proteomic technologies are needed that address these problems and particularly allow accurate quantitation of a larger number of less abundant proteins in plasma and other body fluids. The immunoaffinity-based protein subtraction chromatography (IASC) described here removes multiple proteins present in plasma and serum in high concentrations effectively and reproducibly. Applying IASC as an upfront plasma sample preparation process for 2-DE, the protein spot pattern observed in gels changes dramatically and at least 350 additional lower abundance proteins are visualized. Affinity-purified polyclonal antibodies (pAbs) are the immunoaffinity reagents used to specifically remove the abundant proteins such as albumin, immunoglobulin G, immunoglobulin A, transferrin, haptoglobin, alpha-1-antitrypsin, hemopexin, transthyretin, alpha-2-HS glycoprotein, alpha-1-acid glycoprotein, alpha-2-macroglobulin and fibrinogen from human plasma samples. To render the immunoaffinity subtraction procedure recyclable, the pAbs are immobilized and cross-linked on chromatographic matrices. Antibody-coupled matrices specific for one protein each can be pooled to form mixed-bed IASC columns. We show that up to ten affinity-bound plasma proteins with similar solubility characteristics are eluted from a mixed-bed column in one step. This facilitates automated chromatographic processing of plasma samples in high throughput, which is desirable in proteomic disease marker discovery projects.  相似文献   

19.
Lin Y  Huang R  Chen LP  Lisoukov H  Lu ZH  Li S  Wang CC  Huang RP 《Proteomics》2003,3(9):1750-1757
Global analysis of protein expression holds great promise in basic research and patient care. Previously we demonstrated that multiple cytokines could be detected simultaneously using an enzyme-linked immunosorbent assay protein array system with high sensitivity and specificity. In this paper, we described a biotin-labeled-based protein array system to detect multiple cytokines simultaneously from biological samples. In this new approach, proteins from a variety of biological sources are labeled with biotin. The biotin-labeled proteins are then incubated with antibody chips. Targeted proteins are captured by the array antibodies spotted on the antibody chips. The presence of targeted proteins is detected using Cy3- or Cy5-conjugated streptavidin and signals are imaged by laser scanner. The system also can be easily adapted to a two-color binding assay, allowing measurement of the levels of proteins in a test sample with respect to a reference sample at the same chip. To demonstrate its potential applications, we applied this technology to profile human cytokines, chemokines, growth factors, angiogenic factors and proteases in estrogen receptor (ER)+ and ER- cells. These results suggest that biotin-labeled-based antibody chip technology can provide a practical and powerful means of profiling hundreds or thousands of proteins for research and clinical purposes.  相似文献   

20.
Krogh M  Liu Y  Waldemarson S  Valastro B  James P 《Proteomics》2007,7(23):4235-4244
Differential in-gel electrophoresis (DIGE) experiments allow three protein samples to be run per gel. The three samples are labeled with the spectrally resolvable fluorescent dyes, Cy2, Cy3, and Cy5, respectively. Here, we show that protein-specific dye effects exist, and we present a linear mixed model for analysis of DIGE data which takes dye effects into account. A Java implementation of the model, called DIGEanalyzer, is freely available at http://bioinfo.thep.lu.se/digeanalyzer.html. Three DIGE experiments from our laboratory, with 173, 64, and 24 gels, respectively, were used to quantify and verify the dye effects. DeCyder 5.0 and 6.5 were used for spot detection and matching. The fractions of proteins with a statistically significant (0.001 level) dye effect were 19, 34, and 23%, respectively. The fractions of proteins with a dye effect above 1.4-fold change were 1, 4, and 6%, respectively. The median magnitude of the dye effect was 1.07-fold change for Cy5 versus Cy3 and 1.16-fold change for Cy3 versus Cy2. The maximal dye effect was a seven-fold change. The dye effects of spots corresponding to the same protein tend to be similar within each of the three experiments, and to a smaller degree across experiments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号