首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   19159篇
  免费   1921篇
  国内免费   606篇
  2023年   116篇
  2022年   129篇
  2021年   394篇
  2020年   321篇
  2019年   412篇
  2018年   472篇
  2017年   351篇
  2016年   593篇
  2015年   967篇
  2014年   1058篇
  2013年   1253篇
  2012年   1452篇
  2011年   1432篇
  2010年   940篇
  2009年   739篇
  2008年   1009篇
  2007年   943篇
  2006年   892篇
  2005年   819篇
  2004年   750篇
  2003年   712篇
  2002年   636篇
  2001年   549篇
  2000年   482篇
  1999年   442篇
  1998年   200篇
  1997年   193篇
  1996年   167篇
  1995年   164篇
  1994年   148篇
  1993年   118篇
  1992年   242篇
  1991年   242篇
  1990年   201篇
  1989年   212篇
  1988年   182篇
  1987年   147篇
  1986年   136篇
  1985年   157篇
  1984年   114篇
  1983年   89篇
  1982年   82篇
  1981年   89篇
  1979年   99篇
  1978年   89篇
  1977年   71篇
  1976年   67篇
  1975年   87篇
  1974年   89篇
  1973年   81篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
1.
Exposure to nicotine is known to cause adverse effects in many target organs including kidney. Epidemiological studies suggest that nicotine-induced kidney diseases are prevalent worldwide. However, the impact of duration of exposure on the nicotine-induced adverse effects in normal kidney cells and the underlying molecular mechanism is still unclear. Hence, the objective of this study was to evaluate both acute and long-term effects of nicotine in normal human kidney epithelial cells (HK-2). Cells were treated with 1 and 10 µM nicotine for acute and long-term duration. The result of cell viability showed that the acute exposure to 1 µM nicotine has no significant effect on growth. However, the 10 µM nicotine caused significant decrease in the growth of HK-2 cells. The long-term exposure resulted in significantly increased cell growth in both 1 and 10 µM nicotine-treated groups. Analysis of cell cycle and expression of marker genes related to proliferation and apoptosis further confirmed the effects of nicotine. Additionally, the analysis of growth signaling pathway revealed the decreased level of pAKT in cells with acute exposure whereas the increased level of pAKT in long-term nicotine-exposed cells. This suggests that nicotine, through modulating the AKT pathway, controls the duration-dependent effects on the growth of HK-2 cells. In summary, this is the first report showing long-duration exposure to nicotine causes increased proliferation of human kidney epithelial cells through activation of AKT pathway.  相似文献   
2.
The hydrolysis of sunflower oil using Candida cylindracea lipase in reversed micelles of AOT/isooctane was investigated. The inhibition caused by substrate and hydrolysis products has been found in the process of reaction. It was revealed that the extent of inhibition caused by oleic acid was higher than that caused by glycerol, and was much more serious in the case of the mixture of hydrolysis products. Moreover, with the initial addition of glycerol into the reaction mixture, the stability of lipase could be increased during the hydrolysis of sunflower oil in reversed micelles. We thank the National Natural Science Foundation of China for the financial support of this work. We also thank Prof. Xu, Jia-li for his contributions to this work.  相似文献   
3.
4.
5.
6.
7.
The spectroscopic properties of the light-harvesting complex of Rhodospirillum rubrum, B873, and a detergent-isolated subunit form, B820, are presented. Absorption and circular dichroism spectra suggest excitonically interacting bacteriochlorophyll alpha (BChl alpha) molecules give B820 its unique spectroscopic properties. Resonance Raman results indicate that BCHl alpha is 5-coordinate in both B820 and B873 but that the interactions with the BChl C2 acetyl in B820 and B873 are different. The reactivity of BChl alpha in B820 in light and oxygen, or NaBH4, suggests that it is exposed to detergent and the aqueous environment. Excited-state lifetimes of the completely dissociated 777-nm-absorbing form [1.98 ns in 4.5% octyl glucoside (OG)], the intermediate subunit B820 (0.72 ns in 0.8% OG), and the in vivo like reassociated B873 (0.39 ns in 0.3% OG) were measured by single-photon counting. The fluorescence decays were exponential when emission was detected at wavelengths longer than 864 nm. An in vivo like B873 complex, as judged by its spectroscopic properties, can be formed from B820 without the presence of a reaction center.  相似文献   
8.
Heart failure (HF) remains a common complication after acute ST-segment elevation myocardial infarction (STEMI). Here, we aim to identify critical genes related to the developed HF in patients with STEMI using bioinformatics analysis. The microarray data of GSE59867, including peripheral blood samples from nine patients with post-infarct HF and eight patients without post-infarct HF, were downloaded from the Gene Expression Omnibus database. Differentially expressed genes (DEGs) between HF and non-HF groups were screened by LIMMA package. Functional enrichment analyses of DEGs were conducted, followed by construction of a protein-protein interaction (PPI) network. The dynamic messenger RNA (mRNA) level of the hub genes during the follow-up was analyzed to further elucidate their role in HF development. A total of 58 upregulated and 75 downregulated DEGs were screen out. They were mainly enriched in biological processes about inflammatory response, extracellular matrix organization, response to cAMP, immune response, and positive regulation of cytosolic calcium ion concentration. Pathway analysis revealed that the DEGs were also involved in hematopoietic cell lineage, pathways in cancer, and extracellular matrix-receptor interaction. In the PPI network consisting of 58 nodes and 72 interactions, CXCL8 (degree = 15), THBS1 (degree = 8), FOS (degree = 7), and ITGA2B (degree = 6) were identified as the hub genes. In the comparison of patients with and without post-infarct HF, the mRNA level of these hub genes were all higher within 30 days but reached similar at 6 months after STEMI. In conclusion, CXCL8, THBS1, FOS, and ITGA2B may play important roles in the development of HF after acute STEMI.  相似文献   
9.
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号