首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Site-directed mutagenesis is an invaluable tool for functional studies and genetic engineering. However, most current protocols require the target DNA to be cloned into a plasmid vector before mutagenesis can be performed, and none of them are effective for multiple-site mutagenesis. We now describe a method that allows mutagenesis on any DNA template (eg. cDNA, genomic DNA and plasmid DNA), and is highly efficient for multiple-site mutagenesis (up to 100%). The technology takes advantage of the requirement that, in order for DNA polymerases to elongate, it is crucial that the 3′ sequences of the primers match the template perfectly. When two outer mutagenic oligos are incorporated together with the desired mutagenic oligos into the newly synthesised mutant strand, they serve as anchors for PCR primers which have 3′ sequences matching the mutated nucleotides, thus amplifying the mutant strand only. The same principle can also be used for mutant screening.  相似文献   

2.
Polymerase chain reaction (PCR) is a powerful method to produce linear DNA fragments. Here we describe the Tma thermostable DNA ligase-mediated PCR production of circular plasmid (PPCP) and its application in directed evolution via in situ error-prone PCR. In this thermostable DNA ligase-mediated whole-plasmid amplification method, the resultant DNA nick between the 5′ end of the PCR primer and the extended newly synthesized DNA 3′ end of each PCR cycle is ligated by Tma DNA ligase, resulting in circular plasmid DNA product that can be directly transformed. The template plasmid DNA is eliminated by ‘selection marker swapping’ upon transformation. When performed under an error-prone condition with Taq DNA polymerase, PPCP allows one-step construction of mutagenesis libraries based on in situ error-prone PCR so that random mutations are introduced into the target gene without altering the expression vector plasmid. A significant difference between PPCP and previously published methods is that PPCP allows exponential amplification of circular DNA. We used this method to create random mutagenesis libraries of a xylanase gene and two cellulase genes. Screening of these libraries resulted in mutant proteins with desired properties, demonstrating the usefulness of in situ error-prone PPCP for creating random mutagenesis libraries for directed evolution.  相似文献   

3.
The QuikChangeTM site-directed mutagenesis method is popular but imperfect. An improvement by using partially overlapping primers has been reported several times; however, it is incompatible with the proposed mechanism. The QuikChangeTM method using complementary primers is proposed to linearly amplify a target plasmid with the products annealing to produce double-stranded DNA molecules with 5′-overhangs. The overhang annealing is supposed to form circular plasmids with staggered breaks, which can be repaired in Escherichia coli after transformation. Here, we demonstrated that the PCR enzyme fills the 5′-overhangs in the early cycles, and the product is then used as the template for exponential amplification. The linear DNA molecules with homologous ends are joined to generate the plasmid with the desired mutations through homologous recombination in E. coli. The correct understanding is important to method improvements, guiding us to use partially overlapping primers and Phusion DNA polymerase for site-directed mutagenesis. Phusion did not amplify a plasmid with complementary primers but used partially overlapping primers to amplify the plasmid, producing linear DNA molecules with homologous ends for site-directed mutagenesis.  相似文献   

4.
Wu W  Jia Z  Liu P  Xie Z  Wei Q 《Nucleic acids research》2005,33(13):e110
We have developed a novel three-primer, one-step PCR-based method for site-directed mutagenesis. This method takes advantage of the fact that template plasmid DNA cannot be efficiently denatured at its reannealing temperature (Tra), which is otherwise a troublesome problem in regular PCR. Two flanking primers and one mutagenic primer with different melting temperatures (Tm) are used together in a single PCR tube continuously without any intervention. A single-stranded mutagenic DNA (smDNA) is synthesized utilizing the high Tm mutagenic primer at a high annealing temperature, which prevents the priming of the low Tm primers (i.e. the two flanking primers). A megaprimer is then produced using this smDNA as the template at a denaturing temperature that prevents wild-type template DNA activity. The desired mutant DNA is then obtained by cycling again through these first two steps, resulting in a mutagenic efficiency of 100% in all tested cases. This highly automated method not only eliminates the necessity of any intermediate manipulation and accomplishes the mutagenesis process in a single round of PCR but, most notably, enables complete success of mutagenesis. This novel method is also both cost and time efficient and fully automated.  相似文献   

5.
Many techniques in molecular biology require the use of pure nucleic acids in general and circular DNA (plasmid or mitochondrial) in particular. We have developed a method to separate these circular molecules from a mixture containing different species of nucleic acids using rolling circle amplification (RCA). RCA of plasmid or genomic DNA using random hexamers and bacteriophage Phi29 DNA polymerase has become increasingly popular for the amplification of template DNA in DNA sequencing protocols. Recently, we reported that the mutant single-stranded DNA binding protein (SSB) from Thermus thermophilus (TthSSB) HB8 eliminates nonspecific DNA products in RCA reactions. We developed this method for separating circular nucleic acids from a mixture having different species of nucleic acids. Use of the mutant TthSSB resulted in an enhancement of plasmid or mitochondrial DNA content in the amplified product by approximately 500×. The use of mutant TthSSB not only promoted the amplification of circular target DNA over the background but also could be used to enhance the amplification of circular targets over linear targets.  相似文献   

6.
7.
8.
A V Bellini  F de Ferra  G Grandi 《Gene》1988,69(2):325-330
This paper describes a new method for site-directed mutagenesis which allows mutations by deletion, insertion or substitution of large fragments of DNA with more than 50% efficiency and does not require subcloning in a single-stranded (ss) DNA vehicle. The site of mutagenesis is removed from a linearized plasmid DNA by BAL 31 digestion, ss DNA regions are generated by limited exonuclease treatment and the mutated target site is reconstituted by annealing of the plasmid DNA to a 35-70 nucleotide long mutated ss oligodeoxynucleotide containing the desired mutation. The circularized plasmid is finally used to transform directly Escherichia coli competent cells.  相似文献   

9.
Various mutsgenesis protocols have been established that use the hybridization of a mismatched oligonucleotide to prime DNA synthesis on an M13 phagemid template. For efficient mutagenesis, all of these methods require a means to select for the mutant strand before or during amplification in anEscherichia coli host. In the Altered Sites II protocol, the mismatched oligonucleotide and an oligonucleotide that restores antibiotic resistance to the phagemid are simultaneously hybridized to the template and coupled by DNA synthesis and ligation. The restored antibiotic resistance is then used to select only those phagemids which incorporate the antibiotic repair oligonucleotide. Generally, between 60 and 90% of the phagemids recovered will incorporate both oligonucleotides. This method provides a simple an efficient technique for introducing specific mutations into DNA.  相似文献   

10.
Attempts at site-directed mutagenesis of the fructosyltransferase (ftf) gene of Streptococcus salivarius ATCC 25975 using standard protocols were unsuccessful and resulted in a series of deletions. These deletions appeared to commence at points within the ftf gene where there were palindromic sequences which were capable of forming closed loop structures that acted as terminators under the conditions of mutagenesis. To overcome this problem, two modified mutagenic techniques were developed. They made use of T4 DNA polymerase in conjunction with either T7 DNA polymerase at 37°C or Vent DNA polymerase from Thermococcus litoralis at an elevated temperature. These methods eliminated the need for a single-stranded DNA template and allowed polymerisation through palindromic sequences to rapidly produce multiple site-directed mutations.  相似文献   

11.
Directed evolution relies on both random and site-directed mutagenesis of individual genes and regulatory elements to create variants with altered activity profiles for engineering applications. Central to these experiments is the construction of large libraries of related variants. However, a number of technical hurdles continue to limit routine construction of random mutagenesis libraries in Escherichia coli, in particular, inefficiencies during digestion and ligation steps. Here, we report a restriction enzyme-free approach to library generation using megaprimers termed MegAnneal. Target DNA is first exponentially amplified using error-prone polymerase chain reaction (PCR) and then linearly amplified with a single 3′ primer to generate long, randomly mutated, single-stranded megaprimers. These are annealed to single-stranded dUTP-containing template plasmid and extended with T7 polymerase to create a complementary strand, and the resulting termini are ligated with T4 DNA ligase. Using this approach, we are able to reliably generate libraries of approximately 107 colony-forming units (cfu)/μg DNA/transformation in a single day. We have created MegAnneal libraries based on three different single-chain antibodies and identified variants with enhanced expression and ligand-binding affinity. The key advantages of this approach include facile amplification, restriction enzyme-free library generation, and a significantly reduced risk of mutations outside the targeted region and wild-type contamination as compared with current methods.  相似文献   

12.
We have developed a simple and efficient method for oligonucleotide-directed mutagenesis with double-stranded (plasmid) DNA as a template. The template was simply and rapidly prepared by cell lysis and the following DNA denaturation with alkali. The chain elongation was performed with phosphorothioate-modified nucleotide at 37 degrees C. After the selective digestion of original DNA with NciI and exonuclease III, the desired mutated gene was obtained at a high frequency (about 70%).  相似文献   

13.
A novel plasmid vector pSELECT-1 is described which can be used for highly efficient site-directed in vitro mutagenesis. The mutagenesis method is based on the use of single-stranded DNA and two primers, one mutagenic primer and a second correction primer which corrects a defect in the ampicillin resistance gene on the vector and reverts the vector to ampicillin resistance. Using T4 DNA polymerase and T4 DNA ligase the two primers are physically linked on the template. The non-mutant DNA strand is selected against by growth in the presence of ampicillin. In tests of the vector, highly efficient (60-90%) mutagenesis was obtained.  相似文献   

14.
Site-directed mutagenesis is widely used to study protein and nucleic acid structure and function. Despite recent advancements in the efficiency of procedures for site-directed mutagenesis, the fraction of site-directed mutants by most procedures rarely exceeds 50% on a routine basis and is never 100%. Hence it is typically necessary to sequence two or three clones each time a site-directed mutant is constructed. We describe a simple and robust gradient-PCR-based screen for distinguishing site-directed mutants from the starting, unmutated plasmid. The procedure can use either purified plasmid DNA or colony PCR, starting from a single colony. The screen utilizes the primer used for mutagenesis and a common outside primer that can be used for all other mutants constructed with the same template. Over 30 site-specific mutants in a variety of templates were successfully screened and all of the mutations detected were subsequently confirmed by DNA sequencing. A single base pair mismatch could be detected in an oligonucleotide of 36 bases. Detection efficiency was relatively independent of starting template concentration and the nature of the outside primer used.  相似文献   

15.
Derivatives of an E. coli plasmid pKY33 are described having specific insertions or deletions that effect or do not effect the phr gene (for DNA photolyase) carried in this plasmid. The various plasmids are tested to determine which cause an inhibition of UV mutagenesis producing glutamine tRNA ochre suppressor mutations. The inhibition is found to require a functional phr gene, which substantiates our earlier report that amplified DNA photolyase interferes specifically with a category of mutagenesis involving targeting by a pyrimidine dimer.  相似文献   

16.
基因突变对生命的进化具有重要意义,针对质粒的DNA定点诱变技术也是基因工程、蛋白质工程研究中的重要手段之一。为了提高质粒定点诱变的效率,本研究利用引物部分重叠的设计方案,使用Tm值相对固定的引物设计模式,将同一引物分为重叠区(Tm=50±2℃)和非重叠区(Tm=60±2℃),并在严格控制模板用量(2 pg/kb)的基础上,通过20个PCR循环对目标质粒进行定点诱变扩增,随后取0.5 μL产物直接用于转化。在FastPfu Fly酶系中,利用此法构建了6个含碱基替换、缺失和插入的质粒,均获得成功,突变效率可达96%以上,阳性克隆获得数达70个以上。此外,利用4种不同PCR酶系对该法的适用性进行了评价,结果表明突变效率均可达93%以上,阳性克隆获得数均在10个以上。通过适当增加PCR模板用量(10 pg/kb)并使用纯化后的PCR产物进行转化,该法可适用于转化效率大于106(cfu/μg)的任意感受态细胞,对应的突变效率可大于91%,阳性克隆获得数大于20。根据本法的作用原理,该方案适合质粒中10~20 bp(因重叠区GC含量及碱基序列的不同而改变)以内的任意碱基替换和插入,以及任意长度的DNA片段缺失。且具有通用性强、耗时少、诱变成功率高、成本低、对感受态及转化效率无特殊要求等优点,适合各实验室的日常研究使用。  相似文献   

17.
Universal promoter for gene expression without cloning: expression-PCR   总被引:9,自引:0,他引:9  
  相似文献   

18.
One-step random mutagenesis by error-prone rolling circle amplification   总被引:1,自引:0,他引:1  
In vitro random mutagenesis is a powerful tool for altering properties of enzymes. We describe here a novel random mutagenesis method using rolling circle amplification, named error-prone RCA. This method consists of only one DNA amplification step followed by transformation of the host strain, without treatment with any restriction enzymes or DNA ligases, and results in a randomly mutated plasmid library with 3–4 mutations per kilobase. Specific primers or special equipment, such as a thermal-cycler, are not required. This method permits rapid preparation of randomly mutated plasmid libraries, enabling random mutagenesis to become a more commonly used technique.  相似文献   

19.
We have recently shown that single-base frameshifts were predominant among mutations induced within the rpsL target sequence upon oriC plasmid DNA replication in vitro. We found that the occurrence of +1 frameshifts at a run of 6 residues of dA/dT could be increased proportionally by increasing the concentration of dATP present in the in vitro replication. Using single-stranded circular DNA containing either the coding sequence of the rpsL gene or its complementary sequence, the +1 frameshift mutagenesis by DNA polymerase III holoenzyme of Escherichia coli was extensively examined. A(6) --> A(7) frameshifts occurred 30 to 90 times more frequently during DNA synthesis with the noncoding sequence (dT tract) template than with the coding sequence (dA tract). Excess dATP enhanced the occurrence of +1 frameshifts during DNA synthesis with the dT tract template, but no other dNTPs showed such an effect. In the presence of 0.1 mM dATP, the A(6) --> A(7) mutagenesis with the dT tract template was not inhibited by 1.5 mM dCTP, which is complementary to the residue immediately upstream of the dT tract. These results strongly suggested that the A(6) --> A(7) frameshift mutagenesis possesses an asymmetric strand nature and that slippage errors leading to the +1 frameshift are made during chain elongation within the tract rather than by misincorporation of nucleotides opposite residues next to the tract.  相似文献   

20.
The CRISPR/Cas9 nuclease system is a powerful method to genetically modify the human malarial parasite, Plasmodium falciparum. Currently, this method is carried out by co-transfection with two plasmids, one containing the Cas9 nuclease gene, and another encoding the sgRNA and the donor template DNA. However, the efficiency of modification is currently low owing to the low frequency of these plasmids in the parasites. To improve the CRISPR/Cas9 nuclease system for P. falciparum, we developed a novel method using the transgenic parasite, PfCAS9, which stably expresses the Cas9 nuclease using the centromere plasmid. To examine the efficiency of genetic modification using the PfCAS9 parasite, we performed site-directed mutagenesis of kelch13 gene, which is considered to be involved in artemisinin resistance. Our results demonstrated that the targeted mutation could be introduced with almost 100% efficiency when the transfected PfCAS9 parasites were treated with two drugs to maintain both the centromere plasmid containing the Cas9 nuclease and the plasmid having the sgRNA. Therefore, the PfCAS9 parasite is a useful parasite line for the genetic modification of P. falciparum.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号