首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In the present study, secondary metabolites from an endophytic fungus, Alternaria alternata, colonizing Carica papaya, demonstrated antiquorum sensing properties against Pseudomonas aeruginosa. This study reports the antagonistic effects of fungal crude extract of A. alternata against the various quorum sensing (QS) associated virulent factors such as percentage decrease in production of pyocyanin, alginate, chitinase and rhamnolipid; significant decrease in proteases activity such as LasA protease activity, staphylolytic activity, Las B elastase; and a marked decrease in biofilm formation and associated factors such as exopolysaccharide (EPS) production and cell surface hydrophobicity (CSH). Further, motility pattern i.e., swimming and swarming was also found to be inhibited. This down regulation of QS and associated factors are further supported by in-silico analysis of interaction between QS receptor LasR and bioactive molecules viz., sulfurous acid, 2-propyl tridecyl ester and 1,2-benzenedicarboxylic acid, bis(2-methylpropyl) ester present in fungal crude extract, found based on GCMS analysis, sketches the modulating ability of QS expression. This is the first report on an endophytic fungus of C. papaya having a role in QS inhibition against P. aeruginosa and lays a platform to explore further the endophytes for potent therapeutic agents in QS.  相似文献   

2.
The endophytic diazotrophic Gluconacetobacter diazotrophicus PAL5 was originally isolated from sugarcane (Saccharum officinarum). The biological nitrogen fixation, phytohormones secretion, solubilization of mineral nutrients and phytopathogen antagonism allow its classification as a plant growth-promoting bacterium. The recent genomic sequence of PAL5 unveiled the presence of a quorum sensing (QS) system. QS are regulatory mechanisms that, through the production of signal molecules or autoinducers, permit a microbial population the regulation of the physiology in a coordinated manner. The most studied autoinducers in gram-negative bacteria are the N-acyl homoserine lactones (AHLs). The usage of biosensor strains evidenced the presence of AHL-like molecules in cultures of G. diazotrophicus PAL5 grown in complex and synthetic media. Analysis of AHLs performed by LC-APCI-MS permitted the identification of eight different signal molecules, including C6-, C8-, C10-, C12- and C14-HSL. Mass spectra confirmed that this diazotrophic strain also synthesizes autoinducers with carbonyl substitutions in the acyl chain. No differences in the profile of AHLs could be determined under both culture conditions. However, although the level of short-chain AHLs was not affected, a decrease of 30% in the production of long-chain AHLs could be measured in synthetic medium.  相似文献   

3.
Colonization of sorghum and wheat after seed inoculation with Gluconacetobacter diazotrophicus strains PAL 5 and UAP 5541/pRGS561 (containing the marker gene gusA) was studied by colony counting and microscopic observation of plant tissues. Inoculum levels as low as 102 CFU per seed were enough for root colonization and further spreading in aerial tissues. Rhizoplane colonization was around 7 log CFU g?1 (fresh weight). G. diazotrophicus was found inside sorghum and wheat roots with populations higher than 5 log CFU g?1 (fresh weight). Stem colonization remained stable for 30 days post inoculation with endophyte concentrations from 4 to 5 log CFU g?1 (fresh weight) (in both plants). Population in leaves decreased continuously being undetectable after 17 days post inoculation.  相似文献   

4.
Pathogenic bacteria use interconnected multi-layered regulatory networks, such as quorum sensing (QS) networks to sense and respond to environmental cues and external and internal bacterial cell signals, and thereby adapt to and exploit target hosts. Despite the many advances that have been made in understanding QS regulation, little is known regarding how these inputs are integrated and processed in the context of multi-layered QS regulatory networks. Here we report the examination of the Pseudomonas aeruginosa QS 4-hydroxy-2-alkylquinolines (HAQs) MvfR regulatory network and determination of its interaction with the QS acyl-homoserine-lactone (AHL) RhlR network. The aim of this work was to elucidate paradigmatically the complex relationships between multi-layered regulatory QS circuitries, their signaling molecules, and the environmental cues to which they respond. Our findings revealed positive and negative homeostatic regulatory loops that fine-tune the MvfR regulon via a multi-layered dependent homeostatic regulation of the cell-cell signaling molecules PQS and HHQ, and interplay between these molecules and iron. We discovered that the MvfR regulon component PqsE is a key mediator in orchestrating this homeostatic regulation, and in establishing a connection to the QS rhlR system in cooperation with RhlR. Our results show that P. aeruginosa modulates the intensity of its virulence response, at least in part, through this multi-layered interplay. Our findings underscore the importance of the homeostatic interplay that balances competition within and between QS systems via cell-cell signaling molecules and environmental cues in the control of virulence gene expression. Elucidation of the fine-tuning of this complex relationship offers novel insights into the regulation of these systems and may inform strategies designed to limit infections caused by P. aeruginosa and related human pathogens.  相似文献   

5.
Gluconacetobacter diazotrophicus is a nitrogen-fixing bacterium, which was originally isolated from the interior of sugarcane plants. The genome of strain PAL5 of G. diazotrophicus has been completely sequenced and a next step is the functional characterization of its genes. The aim of this study was to establish an efficient mutagenesis method, using the commercial Tn5 transposon EZ::Tn5?<KAN-2>Tnp Transposome? (Epicentre). Up to 1 × 106 mutants per microgram of transposome were generated in a single electroporation experiment. Insertion-site flanking sequences were amplified by inverse PCR and sequenced for 31 mutants. For ten of these mutants, both insertion flanks could be identified, confirming the 9 bp duplication that is typical for Tn5 transposition. Insertions occurred in a random fashion and were genetically stable for at least 50 generations. One mutant had an insertion in a homolog of the flagellar gene flgA, and was therefore predicted to be affected in flagella-dependent traits and used to validate the applied mutagenesis methodology. This mutant lacked flagella and was non-motile on soft agar. Interestingly, it was also strongly affected in the ability to form biofilm on glass wool.  相似文献   

6.
Gluconacetobacter diazotrophicus is a nitrogen-fixing bacterium and endophyte of sugarcane. We have cloned and sequenced the genes coding for the components of the iron ABC-type acquisition system of G. diazotrophicus. Sequence analysis revealed three ORFs, (feuA, feuB, and feuC) organized as an operon and encoding polypeptides of 346 (38 kDa), 342 (34.2 kDa), and 240 (26 kDa) amino acids, respectively. The deduced translation products of the feu operon showed similarity with a periplasmic solute-binding protein (FeuA), permease (FeuB), and ATPase (FeuC) involved in Fe transport. The role of FeuB in the survival of G. diazotrophicus under iron depletion was evaluated by comparing the ability of wild-type and FeuB-KmR -mutant strains in a medium without iron supplementation and in a medium containing 2, 2′-dipyridyl (DP). Growth of the mutant was affected in the medium containing DP. The operon was expressed at higher levels in cells depleted for iron than in those that contained the metal. A decrease in nitrogenase activity was observed with the FeuB-KmR -mutant strain that with the wild-type under iron deficiency conditions, suggesting that the Feu operon play role in Fe nutrition of G. diazotrophicus.  相似文献   

7.
8.
9.
We present detailed results on the C4-HSL-mediated quorum sensing (QS) regulatory system of the opportunistic Gram-negative bacterium Aeromonas hydrophila. This bacterium contains a particularly simple QS system that allows for a detailed modeling of kinetics. In a model system (i.e., the Escherichia coli monitor strain MH205), the C4-HSL production of A. hydrophila is interrupted by fusion of gfp(ASV). In the present in vitro study, we measure the response of the QS regulatory ahyRI locus in the monitor strain to predetermined concentrations of C4-HSL signal molecules. A minimal kinetic model describes the data well. It can be solved analytically, providing substantial insight into the QS mechanism: at high concentrations of signal molecules, a slow decay of the activated regulator sets the timescale for the QS regulation loop. Slow saturation ensures that, in an A. hydrophila cell, the QS system is activated only by signal molecules produced by other A. hydrophila cells. Separate information on the ahyR and ahyI loci can be extracted, thus allowing the probe to be used in identifying the target when testing QS inhibitors.  相似文献   

10.
Bacteria express certain of their characteristics especially, pathogenicity factors at high cell densities. The process is termed as quorum sensing (QS). QS operates via signal molecules such as acylhomoserine lactones (AHLs). Other bacteria inhibit QS through the inactivation of AHL signals by producing enzymes like AHL-lactonases and -acylases. Comparative genomic analysis has revealed the multiplicity of genes for AHL lactonases (up to 12 copies per genome) among Bacillus spp. and that of AHL-acylases (up to 5 copies per genome) among Pseudomonas spp. This genetic evolution can be envisaged to enable host to withstand the attacks from bacterial population, which regulates its functioning through QS.  相似文献   

11.

Background  

N-acylhomoserine lactone (AHL)-based quorum sensing (QS) systems have been described in many plant-associated Gram-negative bacteria to control certain beneficial phenotypic traits, such as production of biocontrol factors and plant growth promotion. However, the role of AHL-mediated signalling in the endophytic strains of plant-associated Serratia is still poorly understood. An endophytic Serratia sp. G3 with biocontrol potential and high levels of AHL signal production was isolated from the stems of wheat and the role of QS in this isolate was determined.  相似文献   

12.
Bacteria use small diffusible molecules to exchange information in a process called quorum sensing (QS). An important class of quorum sensing molecules used by Gram-negative bacteria is the family of N-acylhomoserine lactones (HSL). It was recently discovered that a degradation product of the QS molecule 3-oxo-C12-homoserine lactone, the tetramic acid 3-(1-hydroxydecylidene)-5-(2-hydroxyethyl)pyrrolidine-2,4-dione, is a potent antibacterial agent, thus implying roles for QS outside of simply communication. Because these tetramic acids also appear to bind iron with appreciable affinity it was suggested that metal binding might contribute to their biological activity. Here, using a variety of spectroscopic tools, we describe the coordination chemistry of both the methylidene and decylidene tetramic acid derivatives with Fe(III) and Ga(III) and discuss the potential biological significance of such metal binding.  相似文献   

13.
Gluconacetobacter diazotrophicus PAL3 was grown in a chemostat with N2 and mixtures of xylose and gluconate. Xylose was oxidized to xylonate, which was accumulated in the culture supernatants. Biomass yields and carbon from gluconate incorporated into biomass increased with the rate of xylose oxidation. By using metabolic balances it is demonstrated that extracellular xylose oxidation led N2-fixing G. diazotrophicus cultures to increase the efficiency of energy generation.  相似文献   

14.
15.
Colonies of the cyanobacterium Trichodesmium are abundant in the oligotrophic ocean, and through their ability to fix both CO2 and N2, have pivotal roles in the cycling of carbon and nitrogen in these highly nutrient-depleted environments. Trichodesmium colonies host complex consortia of epibiotic heterotrophic bacteria, and yet, the regulation of nutrient acquisition by these epibionts is poorly understood. We present evidence that epibiotic bacteria in Trichodesmium consortia use quorum sensing (QS) to regulate the activity of alkaline phosphatases (APases), enzymes used by epibionts in the acquisition of phosphate from dissolved-organic phosphorus molecules. A class of QS molecules, acylated homoserine lactones (AHLs), were produced by cultivated epibionts, and adding these AHLs to wild Trichodesmium colonies collected at sea led to a consistent doubling of APase activity. By contrast, amendments of (S)-4,5-dihydroxy-2,3-pentanedione (DPD)—the precursor to the autoinducer-2 (AI-2) family of universal interspecies signaling molecules—led to the attenuation of APase activity. In addition, colonies collected at sea were found by high performance liquid chromatography/mass spectrometry to contain both AHLs and AI-2. Both types of molecules turned over rapidly, an observation we ascribe to quorum quenching. Our results reveal a complex chemical interplay among epibionts using AHLs and AI-2 to control access to phosphate in dissolved-organic phosphorus.  相似文献   

16.
17.
Bacteria predominantly use quorum sensing to regulate a plethora of physiological activities such as cell-cell crosstalk, mutualism, virulence, competence, biofilm formation, and antibiotic resistance. In this study, we investigated how certain potent endophytic bacteria harbored in Cannabis sativa L. plants use quorum quenching as an antivirulence strategy to disrupt the cell-to-cell quorum sensing signals in the biosensor strain, Chromobacterium violaceum. We used a combination of high-performance liquid chromatography high-resolution mass spectrometry (HPLC-ESI-HRMSn) and matrix-assisted laser desorption ionization imaging high-resolution mass spectrometry (MALDI-imaging-HRMS) to first quantify and visualize the spatial distribution of the quorum sensing molecules in the biosensor strain, C. violaceum. We then showed, both quantitatively and visually in high spatial resolution, how selected endophytic bacteria of C. sativa can selectively and differentially quench the quorum sensing molecules of C. violaceum. This study provides fundamental insights into the antivirulence strategies used by endophytes in order to survive in their ecological niches. Such defense mechanisms are evolved in order to thwart the plethora of pathogens invading associated host plants in a manner that prevents the pathogens from developing resistance against the plant/endophyte bioactive secondary metabolites. This work also provides evidence towards utilizing endophytes as tools for biological control of bacterial phytopathogens. In continuation, such insights would even afford new concepts and strategies in the future for combating drug resistant bacteria by quorum-inhibiting clinical therapies.  相似文献   

18.
Bacteria regulate their pathogenicity and biofilm formation through quorum sensing (QS), which is an intercellular communication system mediated by the binding of signaling molecules to QS receptors such as LasR. In this study, a range of dihydropyrrolone (DHP) analogues were synthesized via the lactone-lactam conversion of lactone intermediates. The synthesized compounds were tested for their ability to inhibit QS, biofilm formation and bacterial growth of Pseudomonas aeruginosa. The compounds were also docked into a LasR crystal structure to rationalize the observed structure-activity relationships. The most active compound identified in this study was compound 9i, which showed 63.1% QS inhibition of at 31.25?µM and 60% biofilm reduction at 250?µM with only moderate toxicity towards bacterial cell growth.  相似文献   

19.
The symbiosis of Medicago truncatula-Sinorhizobium meliloti is affected by phosphate (P) deficiency in the environment. Quorum sensing (QS) is a regulatory pathway in S. meliloti that controls various functions of free-living and symbiotic bacteria in response to phosphate availability and regulation is mediated by a periplasmic protein PstS, and also bacterial density. The quorum sensing pathway of S. meliloti, involves three genes named sinI, sinR and expR and also some bacterial auto-inducers such as N-acyl homoserine lactones (AHLs). In the current study, the expression of the different genes of quorum sensing and pstS were evaluated under 0.1, 0.5 and 2 mM P. The qRT-PCR results showed an increased expression of pstS and also the quorum sensing genes sinI and sinR but not expR, following phosphate starvation. Indeed, the enhanced level of sinR induces the expression of sinI that is responsible for the N-acyl homoserine lactones (AHL) production in S. meliloti. The different response of expR may be due to its negative control on sinR expression. In the symbiosis of M. truncatula-S. meliloti, it was shown that the concentration of phosphate in the medium alters the effective inoculating bacterial quorum (density). By increasing the phosphate concentration in the medium from 0.1 to 0.5 and 2 mM, considering the optimal plant growth and pink nodule (nitrogen-fixing) formation, the effective inoculating bacterial densities were 105, 107 and 109 CFU ml?1, respectively. Therefore, low phosphate concentrations can compensate for a low bacterial density by inducing the quorum sensing pathway and establishing a symbiosis. Conversely, bacterial density plays the main role in the formation of symbiosis at high phosphate concentrations.  相似文献   

20.
Summary We have investigated the interaction of Gluconacetobacter diazotrophicus, a non-nodulating endophytic nitrogen-fixing bacterium isolated from the intercellular spaces of sugarcane, with Arabidopsis thaliana and the crop plants maize (Zea mays), rice (Oryza sativa), wheat (Triticum aestivum), oilseed rape (Brassica napus), tomato (Lycopersicon esculentum), and white clover (Trifolium repens). Using seedlings grown aseptically in sucrose-containing culture media, we have shown that inoculation with very low numbers of G. diazotrophicus results in extensive intracellular colonization of root meristems and progressive systemic intracellular root colonization. Light microscopic examination of thin sections of resin-embedded root tips of Arabidopsis and these crop plants inoculated with β-glucuronidase (GUS)-labeled and with NifH promoter-GUS-labeled G. diazotrophicus showed blue-stained G. diazotrophicus within the cytoplasm of root cells, indicating that intracellular conditions were suitable for nitrogenase gene expression. Electron microscopy confirmed that these bluestained intracellular G. diazotrophicus were within membrane-bounded vesicles. We discuss whether these novel inoculations with G. diazotrophicus are likely to enable non-nodular endosymbiotic nitrogen fixation and whether these inoculations can also provide a plant system to investigate the endosymbiotic theory of the origin of eukaryotic organelles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号