首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   143篇
  免费   16篇
  国内免费   3篇
  2021年   7篇
  2020年   2篇
  2019年   5篇
  2018年   9篇
  2017年   4篇
  2016年   3篇
  2015年   8篇
  2014年   4篇
  2013年   5篇
  2012年   11篇
  2011年   13篇
  2010年   10篇
  2009年   9篇
  2008年   9篇
  2007年   4篇
  2006年   12篇
  2005年   5篇
  2004年   6篇
  2003年   4篇
  2002年   7篇
  2001年   6篇
  2000年   4篇
  1999年   2篇
  1996年   1篇
  1995年   1篇
  1993年   1篇
  1992年   2篇
  1991年   3篇
  1988年   1篇
  1984年   1篇
  1977年   2篇
  1976年   1篇
排序方式: 共有162条查询结果,搜索用时 31 毫秒
1.
In the present investigation, a hCG sensitive glycosyl-phosphatidylinositol (GPI) was isolated from cultured rat granulosa cells obtained from the ovaries of diethylstilbestrol (DES) implanted immature rats. The inositol-phosphoglycan (IPG) moiety of the GPI-lipid contains galactose, glucosamine, and myoinositol as demonstrated by metabolic labelling of granulosa cells for different time periods (5–96 h) with [3H]galactose, [3H]glucosamine, or [3H]myoinositol and treatment of the purified [3H]GPI with phosphatidylinositol-specific phospholipase C. Labelling equilibrium of the GPI-lipid was achieved after 24 h ([3H]galactose and [3H]myoinositol) or 72 h ([3H]glucosamine) incubation, whereas incorporation of other labelled carbohydrates tested ([3H]galactosamine, [3H]mannose, and [3H]sorbitol) was negligible throughout the time period studied. The glucosamine C-1 appears to be linked through a glycosidic bond to the myoinositol molecule of the IPG moiety as revealed by the generation of phosphatidylinositol (PtdIns) after nitrous acid deamination of dual labelled ([3H]glucosamine/[14C]palmitate or [3H]glucosamine/[14C]myristate) glycosyl-phosphatidylinositol. To investigate the fatty acid composition of the diacylglycerol (DAG) backbone of the GPI, granulosa cells were also labelled (5–72 hr) with [14C]linoleate, [3H]myristate, [3H]-oleate, [3H]palmitate, or [3H]stearate and the radioactivity associated with the purified glycosyl-phosphatidylinositol determined. Incorporation of [3H]palmitate and [3H]myristate into the GPI-lipid peaked after 8 h and 24 h of labelling, respectively, and both fatty acids were partially released after PLA2 treatment of the dual labelled ([3H]glucosamine/[14C]palmitate or [3H]glucosamine/[14C]myristate) GPI. In parallel experiments no significant incorporation of labelled stearate, oleate, or linoleic acid into the DAG backbone of the glycosylphosphatidylinositol could be detected. Granulosa cells were also labelled with [3H]glucosamine in the presence of FSH (30 ng/ml), cholera toxin (1 μg/ml), or the membrane permeable cAMP analog (but)2 cAMP (1 mM). Time related increases in GPI-labelling were apparent after 48 h and reached a maximum level (3-, 5-, and 7-fold for FSH, CT, and (but)2 cAMP, respectively) after 72 h in culture. In another set of experiments, granulosa cells were labelled for 72 h with [3H]glucosamine in the presence of (but)2cAMP (1 mM), TPA (10?7 M), or combination thereof. The effect of treatment with the membrane permeable cAMP analog on GPI labelling was prevented in the presence of TPA, whereas no differences in [3H]GPI content could be observed in untreated granulosa cells or cells cultured in the presence of the protein kinase C-activating phorbol ester alone. In cells differentiated with FSH (30 ng/ml for 3 days) to induce LH receptors, treatment with hCG (100 ng/ml) induced a rapid (60 sec) and transient (5 min) decrease in the GPI content, whereas no efect of the hormone on undifferentiated granulosa cells could be observed. The rapid effect elicited by hCG on GPI content and turnover may be an early transduction mechanism involved in the biological effects of LH/hCG in differentiated granulosa cells. © 1993 Wiley-Liss, Inc.  相似文献   
2.
Tunicamycin, an inhibitor of the asparagine-linked protein N-glycosylation, blocks the initiation of DNA synthesis in Swiss 3T3 cells stimulated by prostaglandin F alone or with insulin. This effect is exerted only when tunicamycin is added from 0 to 8 h after stimulation and it decreases the rate of entry into S phase. Blocking of labeled sugar incorporation to proteins occurs regardless of the time of PGF stimulation. In contrast tunicamicin does not inhibit protein synthesis. These results suggest that N-glycoprotein synthesis early during the prereplicative phase is an important event controlling the mitogenic action of PGF  相似文献   
3.
An allosteric phosphofructokinase (PFK) was created by sequence manipulation of the nonallosteric enzyme from the slime mold Dictyostelium discoideum (DdPFK). Most amino acid residues proposed as important for catalytic and allosteric sites are conserved in DdPFK except for a few of them, and their reversion did not modify its kinetic behavior. However, deletions at the unique C-terminal extension of this PFK produced a markedly allosteric enzyme. Thus, a mutant lacking the last 26 C-terminal residues exhibited hysteresis in the time course, intense cooperativity (n(H) = 3.8), and a 200-fold decrease in the apparent affinity for fructose 6-phosphate (S(0.5) = 4500 microm), strong activation by fructose 2,6-bisphosphate (K(act) = 0.1 microm) and fructose 1,6-bisphosphate (K(act) = 40 microm), dependence on enzyme concentration, proton inhibition, and subunit association-dissociation in response to fructose 6-phosphate versus the nonhysteretic and hyperbolic wild-type enzyme (n(H) = 1.0; K(m) = 22 microm) that remained as a stable tetramer. Systematic deletions and point mutations at the C-tail region of DdPFK identified the last C-terminal residue, Leu(834), as critical to produce a nonallosteric enzyme. All allosteric mutants were practically insensitive to MgATP inhibition, suggesting that this effect does not involve the same allosteric transition as that responsible for fructose 6-phosphate cooperativity and fructose bisphosphate activation.  相似文献   
4.
Intrinsically photosensitive retinal ganglion cells (ipRGCs) are depolarized by light by two mechanisms: directly, through activation of their photopigment melanopsin; and indirectly through synaptic circuits driven by rods and cones. To learn more about the rod and cone circuits driving ipRGCs, we made multielectrode array (MEA) and patch-clamp recordings in wildtype and genetically modified mice. Rod-driven ON inputs to ipRGCs proved to be as sensitive as any reaching the conventional ganglion cells. These signals presumably pass in part through the primary rod pathway, involving rod bipolar cells and AII amacrine cells coupled to ON cone bipolar cells through gap junctions. Consistent with this interpretation, the sensitive rod ON input to ipRGCs was eliminated by pharmacological or genetic disruption of gap junctions, as previously reported for conventional ganglion cells. A presumptive cone input was also detectable as a brisk, synaptically mediated ON response that persisted after disruption of rod ON pathways. This was roughly three log units less sensitive than the rod input. Spectral analysis revealed that both types of cones, the M- and S-cones, contribute to this response and that both cone types drive ON responses. This contrasts with the blue-OFF, yellow-ON chromatic opponency reported in primate ipRGCs. The cone-mediated response was surprisingly persistent during steady illumination, echoing the tonic nature of both the rod input to ipRGCs and their intrinsic, melanopsin-based phototransduction. These synaptic inputs greatly expand the dynamic range and spectral bandpass of the non-image-forming visual functions for which ipRGCs provide the principal retinal input.  相似文献   
5.
Challenging evaluation of tropical forest biodiversity requires the reporting of taxonomic diversity but also the systematic characterization of wood properties in order to discover new promising species for timber industry. Among wood properties, the dimensional stability is regarded as a major technological characteristic to validate whether a wood species is adapted to commercial uses. Cell structure and organization are known to influence the drying shrinkage making wood density and microfibrils angle markers of choice to predict wood dimensional stability. On the contrary the role of wood extractive content remains unclear. This work focuses on the fast-growing tropical species Bagassa guianensis and we report herein a correlation between heartwood drying shrinkage and extractive content. Chemical extractions and shrinkage experiments were performed on separate wood twin samples to better evaluate correctly how secondary metabolites influence the wood shrinkage behaviour. Extractive content were qualitatively and quantitatively analysed using HPLC and NMR spectroscopy. We found that B guianensis heartwood has a homogeneous low shrinkage along its radius that could not be explained only by its basic density. In fact the low drying shrinkage is correlated to the high extractive content and a corrected model to improve the prediction of wood dimensional stability is presented. Additionally NMR experiments conducted on sapwood and heartwood extracts demonstrate that secondary metabolites biosynthesis occurs in sapwood thus revealing B. guianensis as a Juglans-Type heartwood formation. This work demonstrates that B. guianensis, a fast-growing species associated with high durability and high dimensional stability, is a good candidate for lumber production and commercial purposes.  相似文献   
6.
7.
Myometrial quiescence is a key factor in all species to accomplish a successful gestation. PGs play a crucial role in mediating parturition events, and their synthesis and metabolism are regulated by cyclooxygenases (COXs) and NAD(+)-dependent 15-hydroxy-PG dehydrogenase (PGDH), respectively. Progesterone (P(4)) is the hormone responsible for maintaining uterine smooth muscle quiescence during pregnancy. In this work, we have studied the effect of P(4) on the activity of COXs and PGDH, the uterine enzymes involved in the biosynthesis and metabolism of prostanoids in the rat. We found that during pregnancy PGF(2alpha) production and also protein levels of COX-1 and COX-2 were decreased. The exogenous administration of P(4) significantly inhibited the uterine production of PGF(2alpha) and also the protein level of COX-2. PGF(2alpha), metabolism was assessed by PGDH activity, which resulted high during pregnancy and increased as a result of P(4) administration. These results indicate that PGs levels were negatively modulated by P(4), which could be exerting its effect by increasing PGs metabolism through stimulation on PGDH activity and an inhibition on COX and that is a major mechanism for maintain uterine quiescence in pregnancy.  相似文献   
8.
Lipid peroxidation in Laternula elliptica was assessed by detecting lipid radicals by electronic paramagnetic resonance. The values were compared with data from the temperate mud clam Mya arenaria. Lipid radical content was higher in the Antarctic bivalve than in the temperate mud clam, even within the range of its habitat temperature. The rate of generation of lipid radicals was affected by the iron content in the samples. The iron content in individual samples of digestive glands in L. elliptica ranged from 3 to 6 nmol g−1 fresh weight (fwt) and in M. arenaria from 0.6 to 2.7 nmol g−1 fwt. Arrhenius plots, developed from the rates obtained in the presence of 25 μM iron, showed no significant differences between the activation energy calculated for digestive glands of L. elliptica and M. arenaria. The Fe3+ reduction rate in L. elliptica was higher than in M. arenaria (4.7±0.9 vs. 1.8±0.4 nmol mg−1 protein min−1, respectively). L. elliptica had a higher content of α-tocopherol and β-carotene than M. arenaria. Our data suggest that increased lipid radical content in the membranes of cold-adapted organisms could be related to iron content.  相似文献   
9.
A role for the exosome in the in vivo degradation of unstable mRNAs   总被引:1,自引:0,他引:1  
In mammals, the mRNAs encoding many proteins involved in inflammation bear destabilizing AU-rich elements (AREs) in the 3'-untranslated region. The exosome, a complex of 3' --> 5' exonucleases, is rate limiting in the destruction of such mRNAs in a mammalian in vitro system, but a role in vivo has not been demonstrated. The phenomenon of ARE-mediated degradation also occurs in the protist parasite Trypanosoma brucei. Messenger RNAs with 3'-untranslated region U-rich elements, which strongly resemble AREs, are extremely unstable in the trypanosome form that parasitizes mammals. The first step in degradation of these mRNAs in vivo is rapid destruction of the 3'-untranslated region; subsequently the mRNA is destroyed by exonucleases acting in both 5' --> 3' and 3' --> 5' directions. We here investigated the roles of three subunits of the trypanosome exosome complex, RRP45, RRP4, and CSL4, in this process, depleting the individual subunits in vivo by inducible RNA interference. RRP45 depletion, which probably disrupts exosome integrity, caused a delay in the onset of degradation of the very unstable RNAs, but did not affect degradation of more stable species. Depletion of RRP4 or CSL4 does not affect the stability of the residual exosome and did not change mRNA degradation kinetics. We conclude that the exosome is required for the initiation of rapid degradation of unstable mRNAs in trypanosomes.  相似文献   
10.
Several different exercise regimens varied in the severity of tissue damage induced. Therefore, this study investigated the effects of a single bout of exercise versus endurance training in heart and skeletal muscles with different predominant fiber types on indices of mitochondrial, endoplasmic reticulum (ER) integrity and protein degradation. Male Wistar rats performed different treadmill exercise protocols: exhaustive, maximal exhaustive, eccentric, training and exhaustive exercise after training. The maximal and eccentric exercises resulted in a significant loss of integrity of the sarcoplasmic and ER muscle, while no changes were observed in cardiac muscle. Mitochondrial membrane fluidity measured by the fluorescence polarization method was significantly increased post-acute exercises in heart and oxidative muscles. Regular exercise can stabilize and preserve the viscoelastic nature of mitochondrial membranes in both tissues. The highest increase in carbonyl content was obtained in heart after exhaustive exercise protocol, from 1+/-0.1 to 3.6+/-0.14 nmol mg protein(-1), such increase were not found after regular exercise with values significantly decreased. Nitrate heart levels showed attenuated generation of nitric oxide after training. Muscle protein oxidation was produced in all exhaustive exercises including eccentric exercise.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号