首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
吸虫塔(suction trap)是用来监测麦类蚜虫和大豆蚜Aphis glycines迁飞种群动态的大型植保测报设备,在欧洲和北美洲已经呈网络安装分布,为蚜虫的预警和防控提供重要依据。作者借鉴欧美吸虫塔的工作原理和设计,设计并生产了符合我国地域特征的吸虫塔设备,在东北、华北、华中、华东、西北等地布点安装了21台,用于监控我国麦类蚜虫和大豆蚜的迁飞动态,初步形成覆盖我国小麦主产区和大豆主产区的吸虫塔网络系统。此吸虫塔总高8.8m,由底部轴流风机运转产生的负压在塔顶部形成吸力,将迁飞经附近的小型昆虫吸入塔管,最后落入下部的样品收集瓶中,以此获得其迁飞的动态数据。吸虫塔网络的构建和完善,不仅为麦类蚜虫和大豆蚜的监控提供支撑,同时也为其它小型迁飞性昆虫监测、种群动态、生物多样性、生物信息学等研究提供数据。  相似文献   

2.
近几年通过国内外科研协作,小麦及蔬菜蚜虫基础及防控技术研究有了长足进展:在害虫行为调控技术方面,通过蚜虫报警激素反-β-法尼烯[(E)-β-Farnesene,EBF]等挥发物缓释对蚜虫及其天敌种群调查,明确了田间应用剂量及持效期、释放点间距、释放器放置高度,以及EBF与化学农药协调应用对蚜虫控制及对天敌的引诱效果及其作用机理,发展了防控小麦、蔬菜蚜虫的"推-拉"技术;在利用作物多样性布局对害虫生态调控技术方面,研究明确小麦与多种作物间、套及混种对蚜虫具有良好控制作用及其最佳作物布局模式,并揭示其降低蚜虫密度、保护天敌及提高土地利用当量等增产效果;筛选了植物源杀虫活性成分,发现博落回提取物中血根碱及植物凝集素对麦蚜具有强杀虫活性,开发获得了一种博落回提取物(Macleaya cordata extract,简称MCE)与烟碱复配配方,杀蚜虫效果达98.9%;通过技术集成研究与示范,在河南、河北与山东推广应用;并采用可量化评价体系,获得当地农民及农技推广部门的反馈意见,对区域集成技术进行调整。研究结果对改变目前过度依赖化学农药防治小麦、蔬菜病虫害的现状,减少农药使用和残留、促进农民增收等小麦、蔬菜病虫害绿色防控技术的开发推广及食品安全具有重要意义。  相似文献   

3.
小麦蚜虫是世界范围内小麦生产中一类重要害虫。针对麦蚜世代历期短、繁殖力强,具有趋光、趋化及迁飞等生物学及行为习性;在田间多呈聚集分布,且麦蚜易受寄主植物抗性、天敌、气象因素及农田生态条件等生物与非生物因素影响等发生为害特点,本文阐述了我国小麦蚜虫田间调查、监测技术及防治策略,以期为我国小麦蚜虫综合防控提供基础科学支撑。  相似文献   

4.
【目的】研究大豆蚜发生为害及大豆与多种作物间邻作种植对大豆蚜的控制作用,为大豆蚜的可持续综合治理提供理论依据。【方法】采用系统调查的方法,研究大豆蚜和天敌田间种群动态;通过田间罩笼、人工接蚜和释放天敌的方法,研究捕食性天敌对大豆蚜种群的控制作用;在佳木斯地区进行大豆与早熟马铃薯间作,牡丹江地区进行黄瓜-大豆-玉米、甜葫芦-大豆-玉米、烟草-大豆-香瓜、甜菜-大豆-玉米等多作物带状穿插种植模式,以单作大豆田为对照,对不同种植模式的大豆田大豆蚜与天敌进行调查,研究作物多样性对大豆蚜的控制作用。【结果】2009年6月中下旬大豆蚜开始侵入大豆田,3~5周后田间有蚜株率达到100%,大豆蚜种群发生高峰期在7月下旬至8月上旬,9月上旬在田间逐渐消失。草蛉、瓢虫和寄生蜂等为蚜虫天敌优势种;按大豆蚜与天敌数量之比700︰1,释放异色瓢虫和叶色草蛉成虫7 d后,蚜虫种群减退率分别为54.78%和78.79%;大豆与早熟马铃薯间作,在大豆蚜种群迅速增长期早熟马铃薯收获(7月20日)后第5天,豆田蚜虫天敌总数是收获前的2.6倍,与同期单作大豆田相比,间作田大豆蚜种群数量降低了51.3%。大豆与甜葫芦、香瓜、烟草和玉米等作物进行多样性间作种植,在大豆蚜田间发生高峰期,单作豆田益害比为1︰65.2,多样性种植区的大豆田益害比为1︰26~1︰42,与单作大豆田相比,间作田大豆蚜种群数量降低40.7%~83.5%。【结论】2009年大豆蚜的种群高峰期为8月3日,田间的天敌优势种类为草蛉、瓢虫和寄生蜂。早熟马铃薯与大豆间作,在大豆蚜种群迅速增长期间收获早熟马铃薯,大量蚜虫天敌转移至间作的大豆田,从而形成对大豆蚜的控制。大豆与其它经济作物间邻作,大豆田天敌昆虫与蚜虫的益害比明显提高,表明利用农田作物多样性能充分发挥自然天敌的生物控害作用。  相似文献   

5.
药剂包衣对苗期大豆蚜防治效果与安全性评价   总被引:2,自引:0,他引:2  
【目的】大豆蚜Aphis glycines(Matsumura)是大豆上最重要的害虫之一。传统控制大豆蚜虫仍然以达到防治指标时大量喷洒化学药剂为主,危害人畜和环境安全。只有在大豆蚜发生初期进行有效防控,使其田间种群不能及时顺利的建立,从而实现无公害绿色防控。【方法】对筛选出的3种内吸式杀虫剂按不同浓度拌种包衣进行大田小区试验,调查分析包衣处理对大豆蚜、天敌以及大豆田其他害虫的影响和控制作用,同时对包衣处理后的大豆安全性、产量和品质进行评估。【结果】药剂拌种包衣处理能够显著压低苗期大豆蚜虫口基数,2014年对照区与处理区蚜量最高峰值比值最大达到448.15;同时对苗期大豆田间的双斑萤叶甲Monolepta hieroglyphica(Motschulsky)有很好的控制作用,处理区与对照区的受害株率差异极显著;并且保护了自然天敌种群;药剂拌种包衣处理在显著增产的同时还有效提升了大豆品质;经权威检测,收获后的籽粒在检出限内无药剂残留。【结论】药剂拌种包衣处理能有效控制苗期大豆蚜,不杀伤天敌,安全、无毒、无残留,而且增产显著,是比较理想的轻简无公害防控手段。  相似文献   

6.
我国农业害虫综合防治研究进展   总被引:5,自引:0,他引:5  
农业害虫综合防治是昆虫学的一门应用科学,旨在明确农作物害虫的发生危害与暴发成灾规律,提出害虫监测预警和可持续治理的理论与方法。在2012-2016年的5年间,我国提出了基于生态系统服务和多尺度空间管理的害虫生态调控新理论,发展了害虫行为调控技术和化学防治新技术,并在棉铃虫对Bt棉花抗性治理对策、稻飞虱的监测预警和综合防控技术、小菜蛾抗药性诊断及治理技术、青藏高原农牧害虫发生规律和分区治理等防治实践中取得了重要进展。根据国际上害虫综合防治学科发展趋势和我国的研究现状,将来还需要在害虫灾变机制研究、害虫绿色防控技术创新研发以及集成应用等方面进行深入探索,为我国农业害虫可持续治理以及化学农药减量使用提供有力的科技支撑。  相似文献   

7.
小麦是世界上三大粮食作物之一,是全球30亿以上人口的主粮。近年来,由于各种病虫害危害,全球小麦生产和粮食安全受到严重威胁,其中由禾谷镰刀菌引起的小麦赤霉病是小麦生产上重要的病害之一。此外,病菌会产生多种真菌毒素对人畜生命健康构成严重威胁。化学药剂的使用以及抗病品种的种植可以有效地控制小麦赤霉病的发生。但是,由于高产优质抗病品种匮乏、气候变暖等因素影响,小麦赤霉病在我国小麦主产区频繁暴发;同时,赤霉病菌抗药性产生致使化学农药的防控效果大大降低。从气候变化、耕作制度改变、小麦品种抗性及病菌抗药性等方面,分析了赤霉病暴发成灾的主要原因。在此基础上,结合当前赤霉病防控研究进展以及存在的科学问题,探讨该病害持续绿色防控的对策建议,以期为我国小麦赤霉病的防控研究提供参考。  相似文献   

8.
【目的】大豆蚜Aphis glycines(Matsumura)是危害我国大豆产量的重要刺吸式害虫,茄无网蚜Acyrthosiphon solani(Kaltenbach)是近年来在大豆田发生逐渐呈上升趋势的刺吸式害虫,蚜虫的发生动态严重影响大豆的产量和品质,本试验调查了马铃薯-大豆、玉米-大豆邻作种植模式对大豆田刺吸式害虫及其他主要害虫的种群动态的影响,为精准使用农药防控蚜虫提供依据。【方法】采用系统调查的方法,研究大豆田刺吸式害虫以及天敌的种群动态,在哈尔滨香坊农场进行马铃薯-大豆、大豆-玉米邻作的种植模式,对其大豆田中大豆蚜、茄无网蚜等刺吸式口器的害虫及天敌动态发生数量进行调查。【结果】2014年与2015年玉米-大豆、马铃薯-大豆种植模式的大豆田中的大豆蚜数量明显低于对照田,2014年玉米-大豆差异更显著,2015年马铃薯-大豆差异性显著。2014年与2015年玉米-大豆、马铃薯-大豆邻作种植模式的大豆田中的茄无网蚜数量显著低于对照田。而2014年8月温度低于2015年虫量相对高于2015年,虫量高时天敌总群动态也相对较高,达到调控作用。【结论】玉米-大豆、马铃薯-大豆邻作种植模式能够起到减少大豆蚜和茄无网蚜的为害的作用,并能够减少农药的使用量。  相似文献   

9.
我国农作物有害生物具有种类多、危害重、发生规律复杂、防控难度大等特点,相关理论和技术创新、防控体系构建与应用是保障农业安全生产的迫切需求.新中国成立70年来,我国植物保护领域取得了一系列的科技成就,农作物有害生物防控从单一的人为干预起步,经历化学农药防治为主,再到绿色防控综合治理的发展阶段,其中较为突出的成就包括:掌握了农作物重大病虫流行灾变规律;揭示了重要农业有害生物的致害机理;研发了一批防控产品;建立了作物病虫害监测预警及防控技术体系.随着产业变革与科技进步,我国植保科技领域将迎来新的挑战和发展机遇.未来的植保理论和技术研究应围绕下列3方面展开:新型生产模式及气候变化下的有害生物发生规律,全球化趋势下的有害生物检测预警技术,绿色可持续的有害生物综合治理新模式.建立现代植保技术体系将保障我国的粮食安全、环境安全和农业可持续发展.  相似文献   

10.
中国农业害虫防治科技70年的成就与展望   总被引:1,自引:0,他引:1  
新中国成立70年以来,随着农业生产方式的不断变革和科技进步,农业害虫的防治策略从20世纪50年代的农业防治发展到80年代的综合防治和现阶段的绿色防控,害虫防治越来越高效、科学和环保。中国农业昆虫学家先后研究明确了水稻、小麦、玉米、棉花、蔬菜和果树等作物主要害虫发生规律,创新了一系列监测预警、生物防治、物理防治、化学生态调控、抗药性治理和抗虫育种技术,构建了以重要作物生产过程和重大致灾害虫为对象的综合防治技术体系。研发的以农业防治为主的蝗虫防控技术体系、以异地测报治理为主的粘虫Mythimnaseparata防控技术体系、以化学农药应急防治为主的稻飞虱防控技术体系、以生物防治为主的玉米螟Ostriniafurnacalis防控技术体系和以转基因技术为主的棉铃虫Helicoverpaarmigera防控技术体系等害虫治理模式,已成为国际农业害虫防治的经典案例。展望未来,信息技术和人工智能技术、基因组技术、农业生物技术等高新技术发展正推动害虫智能化精准识别与监测预警、智能化精准对靶施药、基因诊断与快速检测、害虫种群遗传调控、区域性生态调控和转基因防治技术的不断创新与广泛应用。  相似文献   

11.
Abstract Electrical penetration graph (EPG) investigation showed that the secreting (El) and sucking (E2) times of tea aphid stylet in tea phloem were much longer than that on non‐host plants such as soybean and wheat. However, non‐feeding wave (np) was shorter than that on soybean and wheat. Duration of both El and E2 of stylet in tea phloem of 1st leaf, bud, 4th leaf and tender stem occupied 30.2%, 22.3%, 9.2% and 8.2% of the total experimental time, respectively. E2 wave was accompanied by honeydew secretion, with a time lag. Tea aphid preferred the tender parts, in which amino acids and other nutritional components were very rich. While the stylet of hungry tea aphid was forced to pierce phlom of non‐host plant (soybean or wheat), El and E2 waves were also produced, but the action of stylet could be disrupted by tea shoot volatile (10–6 V/V linalool, etc.) emitted near to the antennae. It was considered that before and under probing tea aphid made use of olfactory clues.  相似文献   

12.
Crop rotations alter the soil environment and physiology of the subsequent crop in ways that may affect the abundance of herbivores and their natural enemies. Soybean aphids are a consistent pest of soybean throughout North America, but little work has focused on how preceding crops may affect pest–predator dynamics. In a replicated experiment over three years, we examined how two preceding crops (spring wheat or an oat/pea mixture) affected seasonal soybean aphid pressure and the ratio of aphids to their predator community. Peak aphid populations were reduced by 40% and 75% in years 1 and 2 by planting spring wheat before soybeans (relative to the oat–pea mixture). Aphid densities were unaffected by preceding crop in the third year of study (aphids were at threshold in this year). Predators responded positively to aphid population increases and were unaffected by preceding crops. Additional research on how crop rotations can be used as a tool to manage soybean aphids warrants further attention.  相似文献   

13.
Since the introduction of soybean aphid, Aphis glycines Matsumura, from Asia, insecticide use in soybean has increased substantially in the north central United States. Insecticide seed treatments and aphid resistant soybean varieties are management tactics that may reduce reliance on foliar applications of broad-spectrum insecticides. Exploring potential nontarget impacts of these technologies will be an important step in incorporating them into aphid management programs. We investigated impacts of thiamethoxam seed treatment and Rag1 aphid resistant soybean on a fungal pathogen of soybean aphid, Pandora neoaphidis (Remaudière & Hennebert) Humber, via open plot and cage studies. We found that although thiamethoxam seed treatment did significantly lower aphid pressure in open plots compared with an untreated control, this reduction in aphid density translated into nonsignificant decreases in fungal disease prevalence in aphids. Furthermore, when aphid densities were approximately equal in seed treated and untreated soybean, no impact on aphid fungal disease was observed. In open plots, Rag1 resistant soybean experienced lower aphid pressure and aphid disease prevalence compared with a nonresistant isoline. However, in cages when aphid densities were equivalent in both resistant and susceptible soybean, resistance had no impact on aphid disease prevalence. The addition of thiamethoxam seed treatment to resistant soybean yielded aphid densities and aphid disease prevalence similar to untreated, resistant soybean. These studies provide evidence that thiamethoxam seed treatments and Rag1 resistance can impact P. neoaphidis via decreased aphid densities; however, this impact is minimal, implying use of seed treatments and host plant resistance are compatible with P. neoaphidis.  相似文献   

14.
The generalist predator, Orius insidiosus (Say) is an important early-season predator of the soybean aphid, Aphis glycines Matsumura, a newly invasive pest of major concern in soybean crop management. We conducted a 3 year, multiple field study to characterize the dynamic relationships between the predator, the pest, and alternative prey in soybean. Using field sampling data, we showed that thrips were the only alternative prey to be well-established in fields prior to O. insidiosus arrival and were likely to promote predator colonization of soybean fields prior to the arrival of soybean aphid. The predator displayed a reproductive numerical response to thrips in one of the 3 years and a primarily aggregative response in another year. The predator did not respond numerically to soybean aphid in the majority of fields. Experimental manipulations of thrips populations in field plots temporarily reduced thrips densities but had a minimal effect on O. insidiosus densities, suggesting that the predator is resilient against temporary reductions in a major resource. In the 2 years O. insidiosus populations were well-established in fields prior to soybean aphid arrival, soybean aphid remained at low levels throughout the season. In the year soybean aphid arrived early with respect to the growing season and before O. insidiosus populations were established, soybean aphid reached outbreak levels in all fields. Future research efforts on the factors determining soybean aphid population dynamics need to address the relative importance of early-season soybean aphid colonization and generalist predator population dynamics on the potential for soybean aphid population outbreaks.  相似文献   

15.
The soybean aphid is an invasive pest in the midwest United States, with frequent population outbreaks. Previous work has shown that aphid population densities are higher on potassium-deficient soybean than on healthy soybean. The experiments reported here test the hypotheses that the potassium nutrition of the host plant affects the forms of phloem nitrogen available to soybean aphids, and subsequently, their abundance. In field surveys and an exclusion cage study when aphid populations were high, soybean plants with potassium deficiency symptoms had a higher density of soybean aphids than plants without deficiency symptoms. In clip cage experiments, this effect was caused by earlier aphid reproduction and higher numbers of aphid nymphs per mother on plants growing in lower-potassium soil. In phloem exudation samples, the percentage of asparagine, an important amino acid for aphid nutrition, increased with decreasing soil potassium, perhaps because of potassium's role in the nitrogen use of the plant. Taken together, these results show that soybean potassium deficiency can lead to higher populations of soybean aphid through a bottom-up effect. A possible mechanism for this relationship is that soybean potassium deficiency improves the nitrogen nutrition of these N-limited insects. By releasing these herbivores from N limitation, host plant potassium deficiency may allow soybean aphid populations to reach higher levels more rapidly in the field.  相似文献   

16.
The soybean aphid, Aphis glycines Matsumura, is a new invasive pest of soybeans throughout most of the soybean production areas of North America. Field studies have demonstrated that the indigenous predator, Orius insidiosus (Say), is an important natural enemy of the soybean aphid early the soybean crop season. Because soybean aphid is newly introduced into North America, the life history characteristics of predators fed this aphid are not known. In laboratory assays, we measured the survival, development, longevity and reproduction of O. insidiosus fed 1, 3, 6 or 12 seconds to third instars of soybean aphid. O. insidiosus nymphal development decreased from 34.0 to 21.4 days as the number of soybean aphid nymphs provided increased from 1 to 6 aphid nymphs daily. Stage-specific mortality was highest at 68% for first instar O. insidiosus nymphs fed 1 soybean aphid nymph per day. Adult longevity (43.9 days) and fecundity (49.7 eggs per female) was highest for O. insidiosus fed 6 soybean aphid nymphs daily, but longevity (23.5 days) and fecundity (10.1 eggs per female) declined for adults fed 1 soybean aphid nymph daily. The intrinsic rate of increase of O. insidiosus ranged from 0.048 to 0.133. Compared to other prey species, soybean aphid is an adequate prey item for O. insidiosus. Our results suggest that O. insidiosus will be most effective in suppressing soybean aphid population growth in the initial phase of the aphid’s colonization of soybeans.  相似文献   

17.
18.
The soybean aphid, Aphis glycines Matsumura (Hemiptera: Aphididae), is a major pest of soybean, Glycine max (L.). Merr., that significantly reduces yield in northern production areas of North America. Insecticides are widely used to control soybean aphid outbreaks, but efforts are underway to develop host plant resistance as an effective alternative management strategy. Here, previously identified resistant lines were evaluated in laboratory tests against field-collected populations of soybean aphid and in field-plot tests over 2 yr in South Dakota. Six lines previously identified with resistance to soybean aphid--Jackson, Dowling, K1639, Cobb, Palmetto and Sennari--were resistant in this study, but relatively high aphid counts on Tie-feng 8 in field plots contrasted with its previously reported resistance. Bhart-PI 165989 showed resistance in one of two laboratory tests, but it had relatively large aphid infestations in both years of field tests. Intermediate levels of soybean aphid occurred in field plots on lines previously shown to have strong (Sugao Zairai, PI 230977, and D75-10169) or moderate resistance to soybean aphid (G93-9223, Bragg, Braxton, and Tracy-M). Sugao Zairai also failed to have a significant proportion of resistant plants in two laboratory tests against aphids field-collected in 2008, but it was resistant in laboratory tests with aphids collected in 2002, 2005, and 2006. Overall, results showed that lines with Rag (i.e., Jackson) or Rag1 gene (i.e., Dowling) had low aphid numbers, whereas lines with Rag2 (i.e., Sugao Zairai, Sennari) had mixed results. Collectively, responses of soybean aphid populations in laboratory and field tests in 2008 resembled a virulence pattern reported previously for biotype 3 soybean aphids, but virulence in soybean aphid populations was variable and dynamic over years of the study. These results, coupled with previous reports of biotypes virulent to Rag1, suggest that deployment of lines with a single aphid-resistance gene is limited for soybean aphid management, and that deployment strategies relying on multiple resistance genes may be needed to effectively use plant resistance against soybean aphid.  相似文献   

19.
Methyl salicylate, an herbivore-induced plant volatile, has been shown to attract natural enemies and affect herbivore behavior. In this study, methyl salicylate was examined for its attractiveness to natural enemies of the soybean aphid, Aphis glycines Matsumura (Hemiptera: Aphididae), and for its direct effects on soybean aphid population growth rates. Methyl salicylate lures were deployed in plots within organic soybean [Glycine max (L.) Merr.] fields. Sticky card traps adjacent to and 1.5 m from the lure measured the relative abundance of natural enemies, and soybean aphid populations were monitored within treated and untreated plots. In addition, exclusion cage studies were conducted to determine methyl salicylate's effect on soybean aphid population growth rates in the absence of natural enemies. Significantly greater numbers of syrphid flies (Diptera: Syrphidae) and green lacewings (Neuroptera: Chrysopidae) were caught on traps adjacent to the methyl salicylate lure, but no differences in abundance were found at traps 1.5 m from the lure. Furthermore, abundance of soybean aphids was significantly lower in methyl salicylate-treated plots. In exclusion cage studies, soybean aphid numbers were significantly reduced on treated soybean plants when all plants were open to natural enemies. When plants were caged, however, soybean aphid numbers and population growth rates did not differ between treated and untreated plants suggesting no effect of methyl salicylate on soybean aphid reproduction and implicating the role of natural enemies in depressing aphid populations. Although aphid populations were reduced locally around methyl salicylate lures, larger scale studies are needed to assess the technology at the whole-field scale.  相似文献   

20.
Soybean varieties that exhibit resistance to the soybean aphid Aphis glycines have been developed for use in North America. In principle, host-plant resistance to soybean aphid can influence the interactions between the soybean aphid and its natural enemies. Resistance could change the quality of soybean aphids as a food source, the availability of soybean aphids, or resistance traits could directly affect aphid predators and parasitoids. Here, we focus on the effect of soybean aphid resistance on the interactions between soybean aphids, the parasitoid Binodoxys communis (Hymenoptera: Braconidae), and predators of these two species. We determined whether host-plant resistance affected within-season persistence of B. communis by releasing parasitoids into resistant and susceptible soybean plots. We observed higher B. communis densities in susceptible soybean plots than in resistant plots. There were also higher overall levels of intraguild predation of B. communis in susceptible plots, although the per-capita risk of intraguild predation of B. communis was affected neither by plant genotype nor by aphid density. We discuss these effects and whether they were caused by direct effects of the resistant plants on B. communis or indirect effects through soybean aphid or predators.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号