首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Field studies in soybeans have demonstrated that the endemic predator, Orius insidiosus (Say), is an important natural enemy of the soybean aphid, Aphis glycines Matsumura. Soybean thrips, Neohydatothrips variabilis (Beach), serve as an important prey resource for O. insidiosus in soybeans and may be important in sustaining O. insidiosus populations before the arrival of soybean aphid. Because soybean aphid is new to the US soybean system, the effects of a mixed diet of soybean aphid and soybean thrips on O. insidiosus life history is not known. We measured the survival, development, and reproduction of O. insidiosus when fed soybean thrips, and a mixed prey diet of soybean aphids and soybean thrips, and compared these results to a previous study of O. insidiosus life history fed soybean aphid alone. Nymphal development to adulthood (15.9 days) and fecundity (68.8 eggs per female) was improved for O. insidiosus fed ad libitum soybean thrips daily compared to O. insidiosus fed ad libitum soybean aphids daily. The contribution of alternative prey to O. insidiosus life history characteristics can be complex depending on the amount and quality of a particular prey item. At low levels of prey, the addition of prey appears to enhance O. insidiosus survival, development, and fecundity. However, as predators are fed more often, the predator’s response depends on the type of prey that predominates in the mixed prey diet. We discuss soybean thrips impact on O. insidiosus population ecology and soybean aphid dynamics.  相似文献   

2.
The generalist predator, Orius insidiosus (Say), is an important natural enemy of the soybean aphid, Aphis glycines Matsumura. Soybean thrips, Neohydatothrips variabilis (Beach), serve as an important prey resource for O. insidiosus in soybeans, sustaining the predator's population before the arrival of the soybean aphid. Although generalist predators can forage on a broad range of prey, they may show distinct preferences for particular prey, attacking prey at levels disproportionate to their relative numbers. To assess the preference of O. insidiosus for soybean aphid and soybean thrips, attack rates of nymphal and adult O. insidiosus were measured in the laboratory. For both adults and nymphs, the number of prey attacked increased as more prey were provided. For nymphs, the total number of prey attacked increased as the predator matured. In general, the number of prey attacked by adult predators was relatively constant as the predator aged. Both O. insidiosus nymphs and adults displayed a preference for soybean thrips, by disproportionately attacking soybean thrips over soybean aphid regardless of the relative densities of the two prey. We discuss implications of this preference on O. insidiosus life history characteristics and the potential impact on O. insidiosus-prey dynamics in the field.  相似文献   

3.
Generalist natural enemies may be well adapted to annual crop systems in which pests and natural enemies re-colonize fields each year. In addition, for patchily-distributed pests, a natural enemy must disperse within a crop field to arrive at infested host patches. As they typically have longer generation times than their prey, theory suggests that generalist natural enemies need high immigration rates to and within fields to effectively suppress pest populations. The soybean aphid, Aphis glycines Matsumura, is a pest of an annual crop and is predominantly controlled by coccinellids. To test if rates of coccinellid arrival at aphid-infested patches are crucial for soybean aphid control, we experimentally varied coccinellid immigration to 1 m2 soybean patches using selective barriers and measured effects on A. glycines populations. In a year with low ambient aphid pressure, naturally-occurring levels of coccinellid immigration to host patches were sufficient to suppress aphid populations, while decreasing coccinellid immigration rates resulted in large increases in soybean aphid populations within infested patches. Activity of other predators was low in this year, suggesting that most of the differences in aphid population growth were due to changes in coccinellid immigration. Alternatively, in a year in which alate aphids continually colonized plots, aphid suppression was incomplete and increased activity of other predatory taxa contributed to adult coccinellid predation of A. glycines. Our results suggest that in a system in which natural enemy populations cannot track pest populations through reproduction, immigration of natural enemies to infested patches can compensate and result in pest control.  相似文献   

4.
The soybean aphid, Aphis glycines Matsumura, is a new invasive pest of soybeans throughout most of the soybean production areas of North America. Field studies have demonstrated that the indigenous predator, Orius insidiosus (Say), is an important natural enemy of the soybean aphid early the soybean crop season. Because soybean aphid is newly introduced into North America, the life history characteristics of predators fed this aphid are not known. In laboratory assays, we measured the survival, development, longevity and reproduction of O. insidiosus fed 1, 3, 6 or 12 seconds to third instars of soybean aphid. O. insidiosus nymphal development decreased from 34.0 to 21.4 days as the number of soybean aphid nymphs provided increased from 1 to 6 aphid nymphs daily. Stage-specific mortality was highest at 68% for first instar O. insidiosus nymphs fed 1 soybean aphid nymph per day. Adult longevity (43.9 days) and fecundity (49.7 eggs per female) was highest for O. insidiosus fed 6 soybean aphid nymphs daily, but longevity (23.5 days) and fecundity (10.1 eggs per female) declined for adults fed 1 soybean aphid nymph daily. The intrinsic rate of increase of O. insidiosus ranged from 0.048 to 0.133. Compared to other prey species, soybean aphid is an adequate prey item for O. insidiosus. Our results suggest that O. insidiosus will be most effective in suppressing soybean aphid population growth in the initial phase of the aphid’s colonization of soybeans.  相似文献   

5.
Generalist insect predators can significantly impact the dynamics of pest populations; and, using alternative prey, they can rapidly establish in disturbed agroecosystems. However, indirect interactions between prey can occur, leading to either increased or decreased predation on focal prey. The present paper demonstrates how alternative prey can disrupt predation by the hemipteran Orius insidiosus on the soybean aphid Aphis glycines via short-term indirect interactions. We used laboratory microcosms to measure the impact of the predator on the population growth of the aphid in the presence of alternative prey, soybean thrips Neohydatothrips variabilis, and we characterized the foraging behaviour of the predator to assess prey preference. We showed that O. insidiosus predation on aphids was reduced in the presence of thrips and that this positive impact on aphids increased as thrips density increased. Results from the behavioural experiment support the hypothesis of a prey preference toward thrips. When prey-pest ratio is aphid-biased, short-term apparent commensalism between prey occurs in favour of the most abundant prey (aphids) with no switching behaviour appearing in O. insidiosus. These results demonstrate that potential indirect interactions should be taken into account when considering O. insidiosus as a biocontrol agent against the soybean aphid.  相似文献   

6.
Generalist predators have the capacity to regulate herbivore populations through a variety of mechanisms, but food webs are complex and defining the strength of trophic linkages can be difficult. Molecular gut-content analysis has revolutionized our understanding of these systems. Utilizing this technology, we examined the structure of a soybean food web, identified the potential for adult and immature Orius insidiosus (Hemiptera: Anthocoridae) to suppress Aphis glycines (Hemiptera: Aphididae), and tested the hypotheses that foraging behaviour would vary between life stages, but that both adults and immatures would exert significant predation pressure upon this invasive pest. We also identified the strength of trophic pathways with two additional food items: an alternative prey item, Neohydatothrips variabilis (Thysanoptera: Thripidae), and an intraguild predator, Harmonia axyridis (Coleoptera: Coccinellidae). A. glycines constituted a greater proportion of the diet of immature O. insidiosus, but N. variabilis DNA was found in greater frequency in adults. However, both life stages were important early-season predators of this invasive pest, a phenomenon predicted as having the greatest impact on herbivore population dynamics and establishment success. No adult O. insidiosus screened positive for H. axyridis DNA, but a low proportion (2.5%) of immature individuals contained DNA of this intraguild predator, thus indicating the existence of this trophic pathway, albeit a relatively minor one in the context of biological control. Interestingly, approximately two-thirds of predators contained no detectable prey and fewer than 3% contained more than one prey item, suggesting the possibility for food limitation in the field. This research implicates O. insidiosus as a valuable natural enemy for the suppression of early-season A. glycines populations.  相似文献   

7.
Banker plants are intended to enhance biological control by sustaining populations of natural enemies. Banker plants do this by providing alternative sources of food for natural enemies, such as pollen for omnivorous predators, thus decreasing the likelihood of their starvation and emigration from a cropping system when pest populations are low or absent. A banker plant system consisting of the Black Pearl pepper, Capsicum annuum ‘Black Pearl’, and the omnivorous minute pirate bug, Orius insidiosus Say (Hemiptera: Anthocoridae) has recently been proposed to improve biological control of thrips. Therefore, we studied how pollen from the Black Pearl pepper plant affects O. insidiosus fitness and abundance through a series of laboratory and greenhouse experiments. We found that a mixed diet of pollen and thrips increased O. insidiosus female longevity, decreased nymphal development time, and yielded larger females compared to a diet of thrips alone. Furthermore, O. insidiosus abundance was greater on flowering pepper plants than non-flowering pepper plants. From these results, we suggest that pollen from Black Pearl pepper banker plants could increase adult O. insidiosus abundance for the purpose of biological control in two ways: (1) reduce starvation and increase longevity of O. insidiosus when prey is absent; (2) enhance O. insidiosus fitness and fecundity when prey is present by mixing plant and prey diets. These results encourage future studies with the Black Pearl pepper as a banker plant for improving biological control of thrips in commercial greenhouses.  相似文献   

8.
Generalist predators are often used in biological control programs, although they can be detrimental for pest control through interference with other natural enemies. Here, we assess the effects of generalist natural enemies on the control of two major pest species in sweet pepper: the green peach aphid Myzus persicae (Sulzer) and the western flower thrips Frankliniella occidentalis (Pergande). In greenhouses, two commonly used specialist natural enemies of aphids, the parasitoid Aphidius colemani Viereck and the predatory midge Aphidoletes aphidimyza (Rondani), were released together with either Neoseiulus cucumeris Oudemans, a predator of thrips and a hyperpredator of A. aphidimyza, or Orius majusculus (Reuter), a predator of thrips and aphids and intraguild predator of both specialist natural enemies. The combined use of O. majusculus, predatory midges and parasitoids clearly enhanced the suppression of aphids and consequently decreased the number of honeydew-contaminated fruits. Although intraguild predation by O. majusculus on predatory midges and parasitoids will have affected control of aphids negatively, this was apparently offset by the consumption of aphids by O. majusculus. In contrast, the hyperpredator N. cucumeris does not prey upon aphids, but seemed to release aphids from control by consuming eggs of the midge. Both N. cucumeris and O. majusculus did not affect rates of aphid parasitism by A. colemani. Thrips were also controlled effectively by O. majusculus. A laboratory experiment showed that adult predatory bugs feed on thrips as well as aphids and have no clear preference. Thus, the presence of thrips probably promoted the establishment of the predatory bugs and thereby the control of aphids. Our study shows that intraguild predation, which is potentially negative for biological control, may be more than compensated by positive effects of generalist predators, such as the control of multiple pests, and the establishment of natural enemies prior to pest invasions. Future work on biological control should focus on the impact of species interactions in communities of herbivorous arthropods and their enemies.  相似文献   

9.
The minute pirate bugs (Hemiptera: Anthocoridae) are effective biological control agents against destructive agricultural pests such as the western flower thrips, Frankliniella occidentalis Pergande (Thysanoptera: Thripidae) in agroecosystems around the world. One species, Orius insidiosus (Say), has proven effective in controlling thrips populations in fields and greenhouses, and serves as an integral component of many integrated pest management (IPM) programs. Three experiments were conducted using motion-tracking software and dual-choice Y-tube bioassays to determine whether direct thrips contact and thrips cues contact induced arrestant and attractant behaviors. The experiments revealed that O. insidiosus adults exhibited behavioral changes indicative of switching from extensive to intensive foraging after direct exposure to thrips prey. Similar arresting behavior was induced by the presence of thrips tracks alone. In Y-tube bioassays O. insidiosus showed preference towards arms containing tracks from western flower thrips larvae vs. clean arms, but only when direct contact with the tracks was made in the stem. Our data indicate that thrips deposit non-volatile semiochemicals that are used by O. insidiosus during foraging. These compounds have the potential to aid in O. insidiosus behavior manipulation which may help in early control of thrips populations in fields and greenhouses. Further research is necessary to determine the chemical composition of these cues and how to effectively and pragmatically integrate the inducing stimuli into biocontrol programs as part of IPM strategies.  相似文献   

10.
1 A recent study revealed the capacity of the Orius insidiosus to suppress populations of Frankliniella spp. in field pepper during the spring when thrips are rapidly colonizing and reproducing. In this study, population abundance in pepper during spring, summer, and autumn was determined to understand better predator/prey dynamics under local conditions. Local movement between pepper flowers also was quantified to examine how population attributes of the predator allow suppression of rapidly moving populations of prey. 2 Randomized complete block experiments established in the autumn of 1998 and the spring of 1999 included treatments of biological and synthetic insecticides, which altered the population densities of predator and prey. Numbers of O. insidiosus in relation to prey were sufficient in 1998 to prevent build‐up of thrips populations. In 1999, populations of thrips were unable to recover from near extinction owing to persistence of the predator. The predator rapidly recolonized plots treated with insecticide. 3 Greenhouse plants of the same age as field plants were used to monitor movement by predators and prey. Movement by F. occidentalis was limited, whereas F. tritici and F. bispinosa moved rapidly to the greenhouse plants. The males of each thrips species moved more rapidly than the females. There was evidence that rapid movement assisted F. tritici and F. bispinosa in avoiding predation, but O. insidiosus also moved very rapidly to the greenhouse plants. This attribute explains the predator's ability to suppress thrips rapidly even when populations are rapidly colonizing and reproducing in the flowers.  相似文献   

11.
We investigated interactions between the generalist predator Orius insidiosus (Say) (Heteroptera: Anthocoridae) and two species of thrips prey, Frankliniella bispinosa (Morgan) and Frankliniella occidentalis (Pergande) (Thysanoptera: Thripidae), and interspecific differences in morphology and behavior between these prey species that could contribute to differences in predation by O. insidiosus. Frankliniella occidentalis is significantly larger than F. bispinosa. Frankliniella bispinosa has greater mobility compared with F. occidentalis. When O. insidiosus was offered either F. bispinosa or F. occidentalis as prey in single species trials, there were no significant differences in the number of prey captured. However, O. insidiosus had significantly more encounters with F. bispinosa than with F. occidentalis. In arenas with equal numbers of both species, O. insidiosus encountered and captured F. occidentalis more than F. bispinosa. In large arenas with two pepper plants (Capsicum annuum L.), O. insidiosus preyed on more F. occidentalis than on F. bispinosa. These results indicate that O. insidiosus can prey on both thrips species, but that it preferentially captures F. occidentalis. The greater locomotion and movement of F. bispinosa, perhaps combined with its smaller size, allow it to evade predation by O. insidiosus better than F. occidentalis. Consequently, the observed preference of O. insidiosus for F. occidentalis is not exclusively a function of active selection by the predator but also could arise from inherent differences among prey. We propose this differential predation as a mechanism contributing to observed differences in the temporal dynamics of these species in pepper fields.  相似文献   

12.
《Biological Control》2006,36(1):57-64
An omnivore shows preference to its preys and thus its control efficiency could be altered in different mix infestation system. The efficiency of Orius insidiosus for biocontrol of either Frankliniella occidentalis or Tetranychus urticae alone or for the two pests in combinations was studied on beans. When only mites or thrips were offered as prey, 1 or 2 O. insidiosus could considerably suppress pest populations at an initial density of 20, 40, and 80 adult female mites, and 100 and 160 thrips larvae, respectively. A single O. insidiosus was able to reduce mite populations by 52.9, 38.7, and 25.8% at initial densities of 20, 40, and 80 mites, respectively, two bugs achieved control levels of 60.6, 63.1, and 38.4%. Releases of 1 and 2 O. insidiosus resulted in corrected mortalities of 62.5 and 87.9%, and 46.3 and 71.9% in F. occidentalis at initial larval densities of 100 and 160, respectively. When two pests were simultaneously offered, the efficiency of O. insidiosus in controlling T. urticae markedly decreased. Furthermore, mite control decreased with increasing T. urticae densities and was also affected by the density of O. insidiosus. The presence of mites at initial densities of 20–80 females did not significantly influence thrips control by O. insidiosus. The presence of F. occidentalis resulted in higher oviposition by O. insidiosus females than the presence of mites, indicating that thrips are a more suitable resource than T. urticae for O. insidiosus. The implications for biocontrol of F. occidentalis and T. urticae are discussed.  相似文献   

13.
The combined release of species of generalist predators can enhance multiple pest control when the predators feed on different prey, but, in theory, predators may be excluded through predation on each other. This study evaluated the co-occurrence of the generalist predators Macrolophus pygmaeus Rambur and Orius laevigatus (Fieber) and their control of two pests in a sweet pepper crop. Both predators consume pollen and nectar in sweet pepper flowers, prey on thrips and aphids, and O. laevigatus is an intraguild predator of M. pygmaeus. Observations in a commercial sweet pepper crop in a greenhouse with low densities of pests showed that the two predator species coexisted for 8 months. Moreover, their distributions in flowers suggested that they were neither attracted to each other, nor avoided or excluded each other. A greenhouse experiment showed that the predators together clearly controlled thrips and aphids better than each of them separately. Thrips control was significantly better in the presence of O. laevigatus and aphid control was significantly better in the presence of M. pygmaeus. Hence, combined inoculative releases of M. pygmaeus and O. laevigatus seem to be a good solution for controlling both thrips and aphids in greenhouse-grown sweet pepper. The predators are able to persist in one crop for a sufficiently long period and they complement each other in the control of both pests. This study also provides further evidence that intraguild predation does not necessarily have negative effects on biological control.  相似文献   

14.
《Biological Control》2004,29(2):189-198
Spirea aphid populations and their predators were studied on apple to identify predators of importance in controlling aphid populations. Methods included random and non-random sampling from apple orchards in West Virginia, USA, sentinel aphid colonies, laboratory feeding studies, and predator exclusion studies. Aphidoletes aphidimyza (Diptera: Cecidomyiidae), chrysopids (Neuroptera: Chrysopidae), Harmonia axyridis (Coleoptera: Coccinellidae), and Orius insidiosus (Hemiptera: Anthocoridae) were the most abundant predators associated with spirea aphid colonies on apple. Parasitoids were all but absent in the study. Abundance of all predators was density dependent with greater responses to aphid populations at the orchard scale than to tree or individual colony scales. A. aphidimyza, O. insidiosus, chrysopids, and syrphids (Diptera) had the greatest degree of density dependence on aphid populations, and spiders showed inverse density dependence. Exclusion of predators with both cages and insecticides produced significantly higher aphid populations. Because of high abundance, good synchrony with aphid populations, and high impact per individual, H. axyridis adults were the most important spirea aphid predator on apple.  相似文献   

15.
Flowering oilseed crops have the potential to diversify agroecosystems currently dominated by corn and soybeans and improve the provision of ecosystem services such as pest control. Nectar and pollen feeding may increase natural enemy fitness and searching behaviour, increasing their survival and prey consumption rates. The soybean aphid (Aphis glycines Matsumura; Hemiptera: Aphididae) is a particularly widespread and costly agricultural pest. In this study, we evaluate the effects of two flowering oilseed crops, cuphea and calendula, on the survival of the insidious flower bug (Orius insidiosus Say; Hemiptera: Anthocoridae) and its consumption levels of A. glycines placed on soybean plants. We also evaluated the survival of O. insidiosus when placed on glandular and non-glandular cuphea varieties. The amount of A. glycines that remained unconsumed by O. insidiosus did not differ among treatments. Because mortality levels of O. insidiosus were higher on glandular compared to non-glandular cuphea plants, glandular trichomes, or plant hairs, may play a role in impeding movement and prey consumption by O. insidious.  相似文献   

16.
Prey from the decomposer subsystem may help sustain predator populations in arable fields. Adding organic residues to agricultural systems may therefore enhance pest control. We investigated whether resource addition (maize mulch) strengthens aboveground trophic cascades in winter wheat fields. Evaluating the flux of the maize-borne carbon into the food web after 9 months via stable isotope analysis allowed differentiating between prey in predator diets originating from the above- and belowground subsystems. Furthermore, we recorded aphid populations in predator-reduced and control plots of no-mulch and mulch addition treatments. All analyzed soil dwelling species incorporated maize-borne carbon. In contrast, only 2 out of 13 aboveground predator species incorporated maize carbon, suggesting that these 2 predators forage on prey from the above- and belowground systems. Supporting this conclusion, densities of these two predator species were increased in the mulch addition fields. Nitrogen isotope signatures suggested that these generalist predators in part fed on Collembola thereby benefiting indirectly from detrital resources. Increased density of these two predator species was associated by increased aphid control but the identity of predators responsible for aphid control varied in space. One of the three wheat fields studied even lacked aphid control despite of mulch-mediated increased density of generalist predators. The results suggest that detrital subsidies quickly enter belowground food webs but only a few aboveground predator species include prey out of the decomposer system into their diet. Variation in the identity of predator species benefiting from detrital resources between sites suggest that, depending on locality, different predator species are subsidised by prey out of the decomposer system and that these predators contribute to aphid control. Therefore, by engineering the decomposer subsystem via detrital subsidies, biological control by generalist predators may be strengthened.  相似文献   

17.
The searching strategies ofOrius insidiosus (Say) exposed to various densities of the soybean thrips,Sericothrips variabilis (Beach), were observed on soybean trifoliolates under laboratory conditions. The effects of prey density on the predator's searching speed and feeding time were evaluated. Predator searching speed and feeding time per soybean thrips declined with increases in prey density. The greatest number of predator-prey encounters occurred on the upper midrib of the soybean trifoliolate. Adult soybean thrips were captured in 45 and 56% of their total encounters with adult male and femaleO. insidiosus, respectively. Running was found to be the primary escape tactic used by soybean thrips in response to attack byO. insidiosus.
Résumé Les stratégies de recherche deOrius insidiosus (Say) exposé à des densités variées de thrips du soja,Sericothrips variabilis (Beach), furent observées sur du soja à 3 folioles en laboratoire. Les effets de la densité de la proie sur la vitesse de recherche et sur le temps nécessaire au prédateur pour se nourrir furent évalués. La vitesse de recherche et le temps de nourriture du prédateur sur le thrips du soja déclinèrent avec l'accroissement de la densité de la proie. Les rencontres prédateur-proie eurent lieu dans leur majorité dans la partie supérieure de la nervure du soja. Les thrips du soja adultes furent capturés respectivement dans 45 et 65% du total de leurs rencontres avec des males et des femelles adultesO. insidiosus. Courir s'est avéré être la tactique primaire de fuite utilisée par les thrips de soja en réponse aux attaques deO. insidiosus.


This paper (No. 80-7-204) is in connection with a project of the Kentucky Agricultural Experiment Station and is published with the approval of the Director.  相似文献   

18.
The abundance of different life stages of Orius insidiosus (Say) (Heteroptera: Anthocoridae) and its prey were recorded in vegetationally diverse (soybean and agronomic weeds) and monoculture (soybean only) fields. Orius insidiosus adults and nymphs were more abundant in diversified plots than in monocultures. A similar number of O. insidiosus eggs were found in the two treatments, but twice as many eggs were laid on non-crop plants than on soybeans within the vegetationally diverse plots. Prey densities were equivalent in the two treatments. In olfactometer assays, naïve O. insidiosus females were unresponsive to odors from three weed species (morning glory, redroot pigweed and velvetleaf). The current results, coupled with previous experimental observations, lead us to believe that higher abundance of O. insidiosus in vegetationally diverse habitats could be related to improved fitness of the predator, which in turn is related to certain plant qualities (e.g., nutrition, plant architecture, etc.). Proximal cues are likely more influential to oviposition decisions by O. insidiosus females than volatile signals.  相似文献   

19.
  • 1 The present study evaluated the population dynamics of the heteroecious soybean aphid Aphis glycines Matsumura (Hemiptera: Aphididae) during an 8‐year period in Indiana, shortly after its detection in North America. Sampling conducted at multiple locations revealed that A. glycines exhibited a 2‐year oscillation cycle that repeated itself four times between 2001 and 2008: years of low aphid abundance were consistently followed by years of high aphid abundance.
  • 2 Similar patterns of abundance of A. glycines and coccinellids (Coleoptera: Coccinellidae) in soybean fields, both within and between‐years, suggest that late season predation by coccinellids plays a role in the oscillatory cycle of aphids. Insidious flower bugs Orius insidiosus (Say) (Hemiptera: Anthocoridae) were numerically more abundant than coccinellids, although the lack of synchrony between aphids and predatory bugs suggests that O. insidiosus has a limited influence on between‐year variations in aphid density.
  • 3 The inverse relationship between aphid densities before and after the start of the autumn migratory period changes direction in alternate years. High aphid density on soybean in the summer is associated with a reduced number of alate migrants produced in the autumn. Conversely, years with low density aphids on soybean in the summer are characterized by high numbers of alates that migrate to the primary host in the autumn.
  • 4 From a pest management perspective, the 2‐year oscillation cycle of A. glycines is a desirable attribute with respect to population dynamics because it implies that aphids cause significant economic damage only in alternate years (as opposed to every year). Cultural practices enhancing the conservation biological control of Coccinellidae may help to preserve the periodicity of aphid infestation and restrict the pest status of A. glycines.
  相似文献   

20.
Onion thrips, Thrips tabaci Lindeman, is the primary pest of onion, which is grown in either large-scale, monoculture systems surrounded by other onion fields, or in small-scale systems surrounded by multiple vegetable crops. In 2011 and 2012, populations of insect predators and their prey, T. tabaci, were assessed weekly in onion fields in both cropping systems. Insect predator taxa (eight species representing five families) were similar in onions grown in both systems and the most commonly occurring predators were from the family Aeolothripidae. Seasonal population dynamics of predators and T. tabaci followed similar trends within both cropping systems and tended to peak in late July and early August. Predator abundance was low in both systems, but predator abundance was nearly 2.5 to 13 times greater in onion fields in the small-scale system. T. tabaci abundance often positively predicted predator abundance in both cropping systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号