首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 234 毫秒
1.
黑龙江省哈尔滨地区吸虫塔有翅蚜种群动态   总被引:1,自引:1,他引:0  
【目的】明确吸虫塔对作物蚜虫防控的指导意义,明确中国黑龙江省哈尔滨地区有翅蚜(和大豆蚜)的种群动态,为大豆蚜虫防控提供预警信息。【方法】2009至2012年通过吸虫塔监测哈尔滨地区有翅蚜及有翅大豆蚜动态结合当年田间大豆蚜动态调查。【结果】哈尔滨吸虫塔全年收集有翅蚜量为0.6~1.7万头不等。具1~3个高峰(不同年份有翅蚜发生高峰数量不同),高峰期时间1个月左右,位于7月中旬至10月中旬之间。周有翅蚜量达200头时预示着有翅蚜高峰期的到来,高峰期有翅蚜量可占年有翅蚜量的90%以上。同一地区不同年份有翅蚜高峰期时间不同。吸虫塔有翅大豆蚜亦具1~3个高峰期,时间位于当年有翅蚜的高峰期时间内,为短短的1周或几周,高峰期蚜量占全年采集有翅大豆蚜量的80%~95%。田间大豆蚜只存在一个高峰,2009、2010、2012年田间大豆蚜高峰期均与吸虫塔收集的大豆蚜高峰期相重叠,且峰值日期一致。【结论】吸虫塔可以很好地反应当年田间大豆蚜的种群动态,表现在高峰期及高峰点的预测,可为大豆蚜的预测预报提供预警信息。  相似文献   

2.
【目的】研究大豆播期对大豆蚜Aphis glycines Matsumura及其天敌的影响。【方法】试验在2012年、2013年进行,设置了3个大豆播期处理。每周调查播期处理田大豆蚜种群及天敌种类和数量,分析大豆蚜种群数量、种群增长率的时序动态、大豆蚜和天敌的关联度。【结果】不同播期条件下大豆蚜有翅蚜及无翅蚜的种群动态趋势基本一致,有翅蚜蚜量高峰期要早于无翅蚜1周。处理间的大豆蚜田间始见期与终见期随着播期推后而延迟,大豆蚜在田间扩散和消退的时期也随着大豆播期延后。晚播的两个处理高峰期蚜量多于或等于正常播期处理的蚜量。大豆蚜与天敌关联度随着播期的推后而变高。在调查的7种天敌中大豆蚜与异色瓢虫的关联度最高,草蛉、小花蝽和蚜茧蜂也表现较高的关联度。【结论】播期会显著影响大豆蚜的田间始见期和终见期,随着播期的推迟大豆蚜种群高峰期蚜量以及大豆蚜与天敌的关联度都会提高。  相似文献   

3.
【目的】印度小裂绵蚜Schizoneurella indica Hille Ris Lambers是在云南昭通苹果上发现的一种新害虫,发生普遍且严重。研究印度小裂绵蚜种群在土壤中的垂直分布及其消长动态是为了掌握其发生与危害特点。【方法】2002—2006年,我们采用盆栽和田间调查的方法对印度小裂绵蚜在土壤中的垂直分布和种群消长开展了研究。【结果】印度小裂绵蚜田间种群数量高峰期主要集中发生在9—12月,5—7月份为其田间种群快速增长期,种群增长率可达200%~273%。印度小裂绵蚜无翅蚜种群在0~30 cm的土壤范围内占总虫量的49.0%,30~60 cm的占27.0%,>60 cm的占24.0%。无翅蚜的各虫龄全年均有发生,冬季以第4龄若虫和无翅成虫为主。有翅蚜的发生全年只有1个时期,为11月上旬至12月下旬。【结论】印度小裂绵蚜田间种群数量全年发生1个高峰期,主要集中在0~30 cm的土壤范围内,随着土壤深度的增加,印度小裂绵蚜种群数量亦逐渐下降。田间有翅蚜虫量极少,较难观察到。  相似文献   

4.
温室瓜蚜种群动态的研究   总被引:2,自引:0,他引:2  
瓜蚜AphisgossypiiGlover在温室黄瓜上的空间格局为聚集分布,分布的基本成分为个体群,聚集强度随密度的上升而下降;瓜蚜主要分布于中部和下部叶片。瓜蚜在温室黄瓜上呈指数增长,模型为Nt=0.1745e0.7414t(r=0.9676)。应用最优分割法将瓜蚜种群动态划分为3个阶段:初建期、发展期和高峰期。在种群初建期,有翅蚜开始迁入,数量较低,以扩散为主,分布不均匀,聚集强度较高;在发展期,瓜蚜种群不断繁殖扩散,分布日趋均匀,聚集强度逐渐下降;在高峰期,瓜蚜种群数量急剧增长到最高峰,分布至所有植株,聚集强度继续下降,此阶段后由于黄瓜植株受害枯萎,瓜蚜缺少食物而数量急剧下降。  相似文献   

5.
【目的】明确沈阳地区吸虫塔对大豆蚜Aphis glycines(Matsumura)迁飞活动的监测效果以及对其有显著影响的气象因素,为大豆蚜防控提供预警信息。【方法】2009年至2014年采用吸虫塔(Suction trap)对大豆蚜的迁飞活动进行自动、实时监测。结合当年田间大豆蚜动态调查,分析吸虫塔诱捕量与田间蚜量的相关性;采用逐步回归分析研究了吸虫塔诱捕量与气象因素的关系。【结果】监测及分析结果表明,吸虫塔诱捕量与田间大豆蚜量之间存在显著的相关性。吸虫塔诱捕的始见期和首次高峰期均早于田间发生的大豆蚜始见期和盛发期,吸虫塔的监测结果对田间蚜虫的发生可以起到预警的作用。诱捕量与气象因子的逐年回归模型分析结果显示,温度和降水量是影响大豆蚜有翅蚜迁飞的重要气象因素;总回归模型显示,试验期间,吸虫塔当年度诱捕量与前一年度冬季极端最低温、4—6月均温、6—7月最低温、9月均温具有正相关同步协同作用,而与6—7月降雨量和9月雨日具有负相关反向抑制作用。【结论】吸虫塔监测结果比较清晰的展示了大豆蚜的迁飞习性,很好的拟合了当年田间大豆蚜的种群动态。结合气象因子和诱捕量的预测模型研究,为吸虫塔及时准确的发挥预警功能提供必要的理论指导和实践依据。  相似文献   

6.
烟蚜属半翅目蚜科,是烟田的重要迁飞性害虫,成蚜和若蚜聚集于烟叶幼嫩部位,吸食植物汁液,滋生霉污病并传播烟草病毒病害,造成产量和质量损失.本文在湖北恩施地区选择烤烟田对烟叶从移栽至中部烟叶开始采收阶段的田间有翅烟蚜和无翅烟蚜的空间分布和发生动态进行调查,并通过地统计学方法分析其半变异函数特性,模拟其田间迁移模式.结果表明:恩施烟区有翅烟蚜种群动态为双峰曲线,烟叶移栽后第3周和烟叶打顶后第2周为发生高峰,呈现随机、聚集、随机、聚集、随机5步过程;无翅烟蚜种群动态为单峰曲线,烟叶打顶前为发生高峰,呈现随机、聚集、随机3步过程;人为因素和寄主特性对其种群密度影响较大;空间分布模拟插值图可以清晰反映出田间烟蚜的发生动态,结合Pearson相关分析发现,有翅蚜迁入高峰期,烟蚜种群数量小并高度集中,构成了田间烟蚜的虫口基数,是烟蚜防治的关键时期.  相似文献   

7.
【目的】研究大豆蚜发生为害及大豆与多种作物间邻作种植对大豆蚜的控制作用,为大豆蚜的可持续综合治理提供理论依据。【方法】采用系统调查的方法,研究大豆蚜和天敌田间种群动态;通过田间罩笼、人工接蚜和释放天敌的方法,研究捕食性天敌对大豆蚜种群的控制作用;在佳木斯地区进行大豆与早熟马铃薯间作,牡丹江地区进行黄瓜-大豆-玉米、甜葫芦-大豆-玉米、烟草-大豆-香瓜、甜菜-大豆-玉米等多作物带状穿插种植模式,以单作大豆田为对照,对不同种植模式的大豆田大豆蚜与天敌进行调查,研究作物多样性对大豆蚜的控制作用。【结果】2009年6月中下旬大豆蚜开始侵入大豆田,3~5周后田间有蚜株率达到100%,大豆蚜种群发生高峰期在7月下旬至8月上旬,9月上旬在田间逐渐消失。草蛉、瓢虫和寄生蜂等为蚜虫天敌优势种;按大豆蚜与天敌数量之比700︰1,释放异色瓢虫和叶色草蛉成虫7 d后,蚜虫种群减退率分别为54.78%和78.79%;大豆与早熟马铃薯间作,在大豆蚜种群迅速增长期早熟马铃薯收获(7月20日)后第5天,豆田蚜虫天敌总数是收获前的2.6倍,与同期单作大豆田相比,间作田大豆蚜种群数量降低了51.3%。大豆与甜葫芦、香瓜、烟草和玉米等作物进行多样性间作种植,在大豆蚜田间发生高峰期,单作豆田益害比为1︰65.2,多样性种植区的大豆田益害比为1︰26~1︰42,与单作大豆田相比,间作田大豆蚜种群数量降低40.7%~83.5%。【结论】2009年大豆蚜的种群高峰期为8月3日,田间的天敌优势种类为草蛉、瓢虫和寄生蜂。早熟马铃薯与大豆间作,在大豆蚜种群迅速增长期间收获早熟马铃薯,大量蚜虫天敌转移至间作的大豆田,从而形成对大豆蚜的控制。大豆与其它经济作物间邻作,大豆田天敌昆虫与蚜虫的益害比明显提高,表明利用农田作物多样性能充分发挥自然天敌的生物控害作用。  相似文献   

8.
玉米田蚜虫种群的空间动态   总被引:1,自引:0,他引:1  
【目的】明确我国黄淮海地区玉米蚜虫种类及其空间分布,掌握玉米蚜虫田间发生规律。【方法】采用系统调查法于2009—2010年在河北廊坊对春玉米、夏玉米上玉米蚜虫种群的发生动态进行了研究。【结果】结果表明,该地区取食为害玉米的蚜虫有5种;玉米蚜Rhopalosiphum maidis(Fitch)和禾谷缢管蚜R.padi(L.)混合发生,为玉米田蚜虫的优势种群。【结论】几种蚜虫的混合种群在玉米田间的动态分布始终呈聚集分布;二项分布k和聚集型指标m~*/x判断表明,随着玉米的生长发育,玉米蚜虫表现扩散-聚集-再扩散-再聚集的趋势。  相似文献   

9.
大豆蚜对环境的适应及对大豆产量的影响   总被引:1,自引:0,他引:1  
2009-2010年,以辽东山区大豆主产区岫岩县作为试验点,系统调查了大豆蚜Aphis glycines Matsumura正常型蚜和小型蚜的种群动态,研究了蜡蚧轮枝菌Verticillium lecanii(Zimmerman)Viegas、豆柄瘤蚜茧蜂Lysiphlebus fabarum Marshall、异色瓢虫Harmonia axyridis(Pallas)对大豆蚜正常型蚜和小型蚜的寄生与捕食作用;另外,也研究了降雨对小型蚜和正常型蚜的冲刷作用,以及小型蚜对大豆产量的影响等。研究结果表明,7月上中旬为大豆蚜小型蚜发生初期,7月下旬—8月上旬为小型蚜发生高峰期,2010年小型蚜平均蚜量达10000头/百株以上。此外,通过比较大豆蚜正常型蚜和小型蚜排蜜量,发现正常型蚜与小型蚜在30min内的排蜜频率差异极其显著,正常型蚜排蜜次数明显多于小型蚜。蜡蚧轮枝菌对大豆蚜小型蚜的侵染较正常型低,前者被侵染率低于3%,后者被侵染率高达25%。豆柄瘤蚜茧蜂对正常型蚜的寄生率较小型蚜高,寄生率分别为43.41%和0.58%。异色瓢虫3龄幼虫对正常型蚜和小型蚜的捕食率分别为80.24%和36.36%。降雨对小型蚜冲刷作用明显低于正常型蚜。最后,通过对单株蚜量与单株产量进行单因素方差分析,结果表明,单株小型蚜量对产量影响不显著(F=0.378;df=7,1;P>0.05)。上述研究为明确大豆蚜的发生与为害、小型蚜适应环境的生存机制以及自然天敌对大豆蚜的田间控制作用,进而为大豆蚜的可持续控制提供理论依据。  相似文献   

10.
恩施烟区无翅桃蚜在烤烟田空间动态的地统计学分析   总被引:2,自引:0,他引:2  
恩施烟区是湖北省最大烟叶生产基地,桃蚜Myzuspercicae(Sulzer)是恩施烟叶最重要的害虫之一,桃蚜在田间的发生以及传播的病毒病害逐年加重,给烟业生产带来巨大损失。进一步了解桃蚜发生动态和空间分布规律,将提高对桃蚜的预测效果并为其综合防治提供理论依据。烟区和烟田之间的迁移以有翅蚜为主,田块内部的种群动态和发生规律,无翅桃蚜发挥着更加重要的作用。受寄主生理生化特性影响,不同烟叶生育期,桃蚜空间结构的差异需要进一步验证。经典的统计学方法以纯随机变量为基础,而昆虫种群的田间分布存在空间相关性,地学统计学承认空间相关性的存在,为区域化变量的空间分布分析提供新的理论和方法。在烟叶不同生育期进行无翅桃蚜的田间密度调查,运用地统计学的方法分析了其空间特征和发生动态,模拟了无翅桃蚜在烟叶不同生育期的田间分布图,并对无翅桃蚜在不同烟叶生育期田间分布格局的相关性进行了分析。结果表明:无翅桃蚜在烟叶苗期密度最小为(5.59±4.07)头/株,烟叶旺长期虫口密度最大为(14.5±9.6)头/株;种群密度变异系数均较大(0.6147-0.7281),表明其空间分布的不均匀性,并随密度的增大而减小,表明种群密度的增大一定程度上提高了种群结构的稳定性。烟叶苗期的种群分布曲线峰度最大,表现出更高的聚集性。无翅桃蚜在烟叶苗期的135°方向和团棵期的45。方向表现为随机分布。烟叶苗期的0°方向和45°方向可用线性有基台模型拟合,其他均可用球形+指数套合模型拟合,判断球形+指数套合模型是无翅桃蚜田间分布的主要模型,属于聚集型分布的范畴。块金值、基台值和变程均随田间虫口密度的增大而增大,苗期的随机程度(0.1905—0.7186)明显大于其他时期(0.0116—0.1620)。无翅桃蚜空间分布模拟图可以清晰地看出无翅桃蚜苗期迁移,旺长期后逐渐稳定的特性。无翅桃蚜的田间分布在烟叶苗期与团棵期无明显相关性,而团棵期与旺长期以及旺长期与成熟期显著相关,再次证明烟叶苗期到团棵期,无翅桃蚜的田间分布发生较大迁移,而团棵期以后基本定殖。烟叶苗期的无翅桃蚜高度聚集在少数烟株上,及早预防可以减少烟叶苗期虫口基数,有利于桃蚜种群数量的控制。首次将平面坐标系划分为4个方向,更加准确、全面地描述昆虫种群的空间分布特征。  相似文献   

11.
Natural enemies suppress many aphid populations, and yet, population outbreaks sometimes occur. The reasons predation fails to suppress such outbreaks are not clearly understood. While manipulating predators to examine their role in soybean aphid population growth, a natural immigration of soybean aphids occurred that enabled us to compare the roles immigration and predation played in population growth. Using predator exclusion cages, we found that predation on the top of the plant accounted for 42.3 ± 11.4% (mean ± SE) reduction in aphid population growth rates. When 90–100% of the canopy was exposed, predation failed to reduce aphid population growth because winged immigrants colonized plants, with an observed 6‐fold increase in alates compared to plants completely covered or exposing only the top nodes (approximately 10% of the total canopy). We conclude that reproduction by immigrants contributed to population growth rates sufficiently to compensate for predation. These results demonstrate that immigration can counteract high levels of predation and lead to aphid population growth rates that could result in outbreak population densities.  相似文献   

12.
A 2‐year field experiment was conducted in northern Illinois to evaluate the effects of host plant resistance and an insecticidal seed treatment (thiamethoxam) on soybean aphids, Aphis glycines Matsumura and their predators. Densities of soybean aphids varied between the 2 years of the experiment. During both years, resistant plants experienced fewer cumulative aphid days than susceptible plants. Populations of soybean aphids on resistant plants rarely exceeded the economic injury level of 250 soybean aphids per plant. The use of thiamethoxam reduced cumulative aphid days in 2007, but not in 2008. Although soybean aphids reached densities that were sufficient to cause yield‐loss for untreated and susceptible plants, no yield‐benefit was associated with using the two management tactics in either year. This latter finding suggests that densities of soybean aphids need to be greater and sustained for a longer period of time than what we observed if the two management tactics are expected to provide a yield‐benefit. Monitoring natural enemies revealed that densities of key aphidophagous predators were relatively unaffected by host plant resistance or thiamethoxam; the effect of these management tactics on densities of predators, as well as the effectiveness of the method used to sample predators, is discussed.  相似文献   

13.
The soybean aphid, Aphis glycines Matsumura, is a newly invasive species of aphid in North America. Previous studies disagree as to whether soybean, Glycine max (L.) Merr., plant stage has an impact on aphid intrinsic rate of increase. Therefore, the growth rate of soybean aphids on soybean plants of different stages was examined at two different scales in the field. A planting date experiment was used to measure the population growth of soybean aphids on plants of different stages. Clip-cages were used to measure life history characteristics of individual aphids on plants of different stages. No differences were found in the population growth or dynamics of soybean aphids in the planting date experiment. The life history characteristics of individual aphids also showed no significant difference when feeding on different growth stages of soybean plants. The impact of these findings on soybean aphid management is discussed and the possible reasons why the results differ from previous estimates of the aphid growth-plant stage relationship are considered.  相似文献   

14.
药剂包衣对苗期大豆蚜防治效果与安全性评价   总被引:2,自引:0,他引:2  
【目的】大豆蚜Aphis glycines(Matsumura)是大豆上最重要的害虫之一。传统控制大豆蚜虫仍然以达到防治指标时大量喷洒化学药剂为主,危害人畜和环境安全。只有在大豆蚜发生初期进行有效防控,使其田间种群不能及时顺利的建立,从而实现无公害绿色防控。【方法】对筛选出的3种内吸式杀虫剂按不同浓度拌种包衣进行大田小区试验,调查分析包衣处理对大豆蚜、天敌以及大豆田其他害虫的影响和控制作用,同时对包衣处理后的大豆安全性、产量和品质进行评估。【结果】药剂拌种包衣处理能够显著压低苗期大豆蚜虫口基数,2014年对照区与处理区蚜量最高峰值比值最大达到448.15;同时对苗期大豆田间的双斑萤叶甲Monolepta hieroglyphica(Motschulsky)有很好的控制作用,处理区与对照区的受害株率差异极显著;并且保护了自然天敌种群;药剂拌种包衣处理在显著增产的同时还有效提升了大豆品质;经权威检测,收获后的籽粒在检出限内无药剂残留。【结论】药剂拌种包衣处理能有效控制苗期大豆蚜,不杀伤天敌,安全、无毒、无残留,而且增产显著,是比较理想的轻简无公害防控手段。  相似文献   

15.
How above- and belowground plant pests interact with each other and how these interactions affect productivity is a relatively understudied aspect of crop production. Soybean cyst nematode, Heterodera glycines Ichinohe, a root parasite of soybean, Glycine max (L.) Merr., is the most threatening pathogen in soybean production and soybean aphid, Aphis glycines Matsumura, an aboveground phloem-feeding insect that appeared in North America in 2000, is the key aboveground herbivore of soybean in the midwestern United States. Now, both soybean aphid and soybean cyst nematode co-occur in soybean-growing areas in the Upper Midwest. The objectives of this study were to examine aphid colonization patterns and population growth on soybean across a natural gradient of nematode density (range, approximately 900 and 27,000 eggs per 100 cm3 soil), and to investigate the effect of this pest complex on soybean productivity. Alate (winged) soybean aphid colonization of soybean was negatively correlated to soybean cyst nematode egg density (r = -0.363, P = 0.0095) at the end of July, at the onset of peak alate colonization. However, both a manipulative cage study and openly colonized plants showed that soybean cyst nematode density below ground was unrelated to variation in aphid population growth (r approximately -0.01). Based on regression analyses, soybean aphids and cyst nematodes had independent effects on soybean yield through effects on different yield components. High soybean cyst nematode density was associated with a decline in soybean yield (kg ha(-1)), whereas increasing soybean aphid density (both alate and apterous) significantly decreased seed weight (g 100 seeds(-1)).  相似文献   

16.
Soybean aphids, Aphis glycines Matsumura, and soybean cyst nematodes, Heterodera glycines Ichinohe, are economic pests of soybean, Glycine max (L.) Merr., in the north‐central United States. Combined, these pests may account for 20–50% of yield reductions in a soybean crop. Only limited information is available concerning the interaction of these two pests on soybean production. During the summers of 2006 and 2007, we conducted a field‐experiment near Urbana, IL, to evaluate the effect of resistant and susceptible soybean lines on the development and reproduction of both pests in combination with each other. We also examined how each pest, as well as their interaction, affected the yield of susceptible and resistant soybean lines. Soybean plants grown within caged plots were infested with soybean aphids and soybean cyst nematodes; cumulative aphid days and soybean cyst nematode egg densities were determined at the end of each growing season. Soybean aphids were able to survive on all four soybean lines in both years of this study; however, aphid‐resistant lines generally had fewer cumulative aphid days than aphid‐susceptible lines. Likewise, nematode‐resistant lines typically had fewer eggs than nematode‐susceptible lines. During both years, we failed to observe a significant interaction between these two pests on the reproduction of one another. Yield data from 2006 was inconclusive; however, results from 2007 suggest that yield‐loss when soybean aphids and soybean cyst nematodes occur jointly is not significantly greater than when these two pests occur independently. The relationship between these two pests, and our inability to observe an interaction, are discussed.  相似文献   

17.
Herbivores on plants frequently interact via shared resources. Studies that have examined performance of herbivores in the presence of other herbivores, however, have often focused on above-ground feeding guilds and relatively less research has examined interactions between below- and above-ground consumers. We examine how soybean aphid, Aphis glycines (Matsumura) an above-ground phloem-feeding herbivore, interacts with a below-ground plant parasite, soybean cyst nematode, Heterodera glycines (Ichinohe) through their shared host plant, soybean (Glycine max L). Laboratory experiments evaluated the preference of alate (flight-capable) soybean aphids toward plants either infected with soybean cyst nematode or uninfected controls in a simple choice arena. Alate soybean aphids preferred uninfected soybean over soybean cyst nematode-infected plants: 48 h after the releases of alate aphids in the center of the arena, 67% more aphids were found on control soybean compared with nematode infected plants. No-choice feeding assays were also conducted using clip cages and apterous (flight-incapable) aphids to investigate effect of soybean cyst nematode infection of soybean on aphid performance. These studies had mixed results: in one set of experiments overall aphid population growth at 7 d was not statistically different between control and soybean cyst nematode-infected plants. A different experiment using a life-table analysis found that apterous aphids feeding on soybean cyst nematode-infected plants had significantly greater finite rate of increase (λ), intrinsic rate of increase (r(m)), and net reproductive rate (R(o)) compared with aphids reared on uninfected (control) soybean plants. We conclude that the below-ground herbivore, soybean cyst nematode, primarily influences soybean aphid behavior rather than performance.  相似文献   

18.
Regional variation in the number of pea aphids caught in the suction traps of the Rothamsted Insect Survey (RIS) was associated with the proportion of each region under pea crops. The degree of infestation of crops was similar in areas of high and low pea production as the mean annual abundance of aphids per hectare of crop remained constant. Yearly variation in abundance was loosely associated with temperature from January to July. Cold weather in January and February resulted in large numbers of aphids. Warm weather in February led to early colonization, and emigration from, pea crops as well as making early sowing of the crop more likely. A forecast of the time of first appearance of Acyrthosiphon pisum in the aerial plankton can be made, based on February temperature. Populations of A. pisum on peas appear to be regulated by alata production. High densities of aphids resulted in almost all the nymphs developing into alatae which, on reaching maturity, emigrated, causing populations on the crop to decline. This explains population crashes of the pea aphid observed at early growth stages of the crop, on vining and combining peas. Late sowing of peas, a probable effect of cold winters, results in higher aphid densities at flowering. The probable explanation for this is that late-sown crops are colonized at an earlier growth stage, so that the aphid population has a longer period of time in which to develop.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号