首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 502 毫秒
1.
During our continued search for strong skin whitening agents over the past ten years, we have investigated the efficacies of many tyrosinase inhibitors containing a common (E)-β-phenyl-α,β-unsaturated carbonyl scaffold, which we found to be essential for the effective inhibition of mushroom and mammalian tyrosinases. In this study, we explored the tyrosinase inhibitory effects of 2,3-diphenylacrylic acid (2,3-DPA) derivatives, which also possess the (E)-β-phenyl-α,β-unsaturated carbonyl motif. We synthesized fourteen (E)-2,3-DPA derivatives 1a1n and one (Z)-2,3-DPA-derivative 1l′ using a Perkin reaction with phenylacetic acid and appropriate substituted benzaldehydes. In our mushroom tyrosinase assay, 1c showed higher tyrosinase inhibitory activity (76.43 ± 3.53%, IC50 = 20.04 ± 1.91 µM) with than the other 2,3-DPA derivatives or kojic acid (21.56 ± 2.93%, IC50 = 30.64 ± 1.27 μM). Our mushroom tyrosinase inhibitory results were supported by our docking study, which showed compound 1c (−7.2 kcal/mole) exhibited stronger binding affinity for mushroom tyrosinase than kojic acid (−5.7 kcal/mole). In B16F10 melanoma cells (a murine cell-line), 1c showed no cytotoxic effect up to a concentration of 25 μM and exhibited greater tyrosinase inhibitory activity (68.83%) than kojic acid (49.39%). In these cells, arbutin (a well-known tyrosinase inhibitor used as the positive control) only inhibited tyrosinase by 42.67% even at a concentration of 400 μM. Furthermore, at 25 µM, 1c reduced melanin contents in B16F10 melanoma cells by 24.3% more than kojic acid (62.77% vs. 38.52%). These results indicate 1c is a promising candidate treatment for pigmentation-related diseases and potential skin whitening agents.  相似文献   

2.
The inhibition of tyrosinase is an established strategy for treating hyperpigmentation. Our previous findings demonstrated that cinnamic acid and benzoic acid scaffolds can be effective tyrosinase inhibitors with low toxicity. The hydroxyl substituted benzoic and cinnamic acid moieties of these precursors were incorporated into new chemotypes that displayed in vitro inhibitory effect against mushroom tyrosinase. The most active compound, (2-(3-methoxyphenoxy)-2-oxoethyl (E)-3-(4-hydroxyphenyl) acrylate) 6c, inhibited tyrosinase with an IC50 of 5.7 µM, while (2-(3-methoxyphenoxy)-2-oxoethyl 2, 4-dihydroxybenzoate) 4d had an IC50 of 23.8 µM. In comparison, the positive control, kojic acid showed tyrosinase inhibition with an IC50 = 16.7 µM. Analysis of enzyme kinetics revealed that 6c and 4d displayed noncompetitive reversible inhibition of the second tyrosinase enzymatic reaction with Ki values of 11 µM and 130 µM respectively. In silico docking studies with mushroom tyrosinase (PDB ID 2Y9X) predicted possible binding modes in the catalytic site for these active compounds. The phenolic para-hydroxy group of the most active compound 6c is predicted to interact with the catalytic site Cu++ ion. The methoxy part of this compound is predicted to form a hydrogen bond with Arg 268. Compound 6c had no observable toxic effects on cell morphology or cell viability at the highest tested concentration of 91.4 µM. When dosed at 91.4 µM onto B16F10 melanoma cells in vitro 6c showed anti-melanogenic effects equivalent to kojic acid at 880 µM. 6c displayed no PAINS (pan-assay interference compounds) alerts. Our results show that compound 6c is a more potent tyrosinase inhibitor than kojic acid and is a candidate for further development. Our exposition of the details of the interactions between 6c and the catalytic pocket of tyrosinase provides a basis for rational design of additional potent inhibitors of tyrosinase, built on the cinnamic acid scaffold.  相似文献   

3.
Tyrosinase enzyme plays a crucial role in melanin biosynthesis and enzymatic browning process of vegetables and fruits. A series of veratric acid derivatives containing benzylidene-hydrazine moieties with different substitutions were synthesized and their inhibitory effect on mushroom tyrosinase and free radical scavenging activity were evaluated. The results indicated that N′-(4-chlorobenzylidene)-3,4-dimethoxybenzohydrazide (D5) and N′-(2,3-dihydroxybenzylidene)-3,4-dimethoxybenzohydrazide (D12) showed the highest tyrosinase inhibitory activity with IC50 values of 19.72 ± 1.84 and 20.63 ± 0.79 μM, respectively, that were comparable with the IC50 value of kojic acid (19.08 ± 1.21 μM). D12 was also a potent radical scavenger with EC50 value of 0.0097 ± 0.0011 mM. The free radical scavenging activity of D12 was comparable with the standard quercetin. The inhibition kinetic analyzed by Lineweaver-Burk plots revealed that compound D5 was a competitive tyrosinase inhibitor. Molecular docking study was carried out for the derivatives demonstrating tyrosinase inhibitory activity. D5 and D12 possessed the most negative estimated free energies of binding in mushroom tyrosinase active site. Therefore, D5 and D12 could be introduced as potent tyrosinase inhibitors that might be promising leads in medicine, cosmetics and food industry.  相似文献   

4.
In the present study, we aimed to identify the tyrosinase enzyme inhibitory potential of Vinca major L. extract and its secondary metabolites. The extract possessed remarkable tyrosinase enzyme inhibitory effect with IC50 value of 20.39 ± 0.44 µg/mL compared to the positive control, kojic acid (IC50 8.56 ± 0.17 µg/mL). Compounds 1 and 5 were the most potent isolates with IC50 values of 32.41 ± 0.99 and 31.34 ± 0.75 µM, they were more potent than kojic acid (IC50: 60.25 ± 0.54 µM). Compound 2 also exhibited remarkable tyrosinase inhibition with an IC50 value of 64.51 ± 1.29 µM. An enzyme kinetics analysis revealed that 1 was a mixed-type, 2 and 5 were noncompetitive inhibitors. Using molecular docking, we predicted binding affinity and interactions of the compounds, which were in good alignment with a pharmacophore hypothesis generated out of a number of known tyrosinase inhibitors. The modelling studies underlined crucial interactions with the copper ions and residues around them such as Asn260, His263, and Met280.  相似文献   

5.
Thirteen (Z)-4-(substituted benzylidene)-3-phenylisoxazol-5(4H)-ones were designed to confirm the geometric effect of the double bond of the β-phenyl-α, β-unsaturated carbonyl scaffold on tyrosinase inhibitory activity. Compounds 1a1m, which all possessed the (Z)-β-phenyl-α, β-unsaturated carbonyl scaffold, were synthesized using a tandem reaction consisting of an isoxazolone ring formation and a Knoevenagel condensation, and three starting materials, ethyl benzoylacetate, hydroxylamine and benzaldehydes. Some of the compounds showed inhibitory activity against mushroom tyrosinase as potent as compounds containing the “(E)”-β-phenyl-α, β-unsaturated carbonyl scaffold. Compounds 1c and 1m showed greater inhibitory activity than kojic acid: IC50?=?32.08?±?2.25?μM for 1c; IC50?=?14.62?±?1.38?μM for 1m; and IC50?=?37.86?±?2.21?μM for kojic acid. A kinetic study indicated that 1m inhibited tyrosinase in a competitive manner and that it probably binds to the enzyme’s active site. In silico docking simulation supported binding of 1m (?7.6?kcal/mol) to the active site of tyrosinase with stronger affinity than kojic acid (?5.7?kcal/mol). Similar results were obtained using cell-based assays, and in B16F10 cells, compound 1m dose-dependently inhibited tyrosinase activity and melanogenesis. These results indicate the anti-melanogenic effect of compound 1m is due to the inhibition of tyrosinase and (Z)-isomer of the β-phenyl-α, β-unsaturated carbonyl scaffold can, like its congener the (E)-isomer, act as an excellent scaffold for tyrosinase inhibition.  相似文献   

6.
A novel series of biscoumarin-1,2,3-triazole hybrids 6a-n was prepared and evaluated for α-glucosidase inhibitory potential. All fourteen derivatives exhibited excellent α-glucosidase inhibitory activity with IC50 values ranging between 13.0 ± 1.5 and 75.5 ± 7.0 µM when compared with the acarbose as standard inhibitor (IC50 = 750.0 ± 12.0 µM). Among the synthesized compounds, compounds 6c (IC50 = 13.0 ± 1.5 µM) and 6g (IC50 = 16.4 ± 1.7 µM) exhibited the highest inhibitory activity against α-glucosidase and were non-cytotoxic towards normal fibroblast cells. Kinetic study revealed that compound 6c inhibits the α-glucosidase in a competitive mode. Furthermore, molecular docking investigation was performed to find interaction modes of the biscoumarin-1,2,3-triazole derivatives.  相似文献   

7.
Two series of novel kojic acid analogues (4aj) and (5ad) were designed and synthesized, and their mushroom tyrosinase inhibitory activities was evaluated. The result indicated that all the synthesized derivatives exhibited excellent tyrosinase inhibitory properties having IC50 values in the range of 1.35 ± 2.15–17.50 ± 2.75 μM, whereas standard inhibitor kojic acid have IC50 values 20.00 ± 1.08 μM. Specifically, 5-phenyl-3-[5-hydroxy-4-pyrone-2-yl-methylmercap-to]-4-(2,4-dihydroxyl-benzylamino)-1,2,4-triazole (4f) exhibited the most potent tyrosinase inhibitory activity with IC50 value of 1.35 ± 2.15 μM. The kinetic studies of the compound (4f) demonstrated that the inhibitory effects of the compound on the tyrosinase were belonging to competitive inhibitors. Meanwhile, the structure-activity relationship was discussed.  相似文献   

8.
Abstract

A series of umbelliferone analogues were synthesized and their inhibitory effects on the DPPH and mushroom tyrosinase were evaluated. The results showed that some of the synthesized compounds exhibited significant mushroom tyrosinase inhibitory activities. Especially, 2-oxo-2-[(2-oxo-2H-chromen-7-yl)oxy]ethyl-2,4-dihydroxybenzoate (4e) bearing 2,4-dihydroxy substituted phenyl ring exhibited the most potent tyrosinase inhibitory activity with IC50 value 8.96?µM and IC50 value of kojic acid is 16.69. The inhibition mechanism analyzed by Lineweaver–Burk plots revealed that the type of inhibition of compound 4e on tyrosinase was non-competitive. The docking study against tyrosinase enzyme was also performed to determine the binding affinity of the compounds. The compounds 4c and 4e showed the highest binding affinity with active binding site of tyrosinase. The initial structure activity relationships (SARs) analysis suggested that further development of such compounds might be of interest. The statistics of our results endorses that compounds 4c and 4e may serve as a structural template for the design and development of novel tyrosinase inhibitors.  相似文献   

9.
Aryl pyrazoles are well recognized class of heterocyclic compounds found in several commercially available drugs. Owing to their significance in medicinal chemistry, in this current account we have synthesized a series of suitably substituted aryl pyrazole by employing Suzuki cross-coupling reaction. All compounds were evaluated for inhibition of mushroom tyrosinase enzyme both in vitro and in silico. Compound 3f (IC50 = 1.568 ± 0.01 µM) showed relatively better potential compared to reference kojic acid (IC50 = 16.051 ± 1.27 µM). A comparative docking studies showed that compound 3f have maximum binding affinity against mushroom tyrosinase (PDBID: 2Y9X) with binding energy value (−6.90 kcal/mol) as compared to Kojic acid. The 4-methoxy group in compound 3f shows 100% interaction with Cu. Compound 3f displayed hydrogen binding interaction with His61 and His94 at distance of 1.71 and 1.74 Å which might be responsible for higher activity compared to Kojic acid.  相似文献   

10.
A series of coumarinyl-pyrazolinyl substituted thiazoles derivatives were synthesized and their inhibitory effects on the DPPH and mushroom tyrosinase were evaluated. The results showed that all of the synthesized compounds exhibited significant mushroom tyrosinase inhibitory activities. In particular, 3-(5-(4-(benzyloxy)-3-methoxyphenyl)-1-(4-(4-bromophenyl)thiazol-2-yl)-4,5-dihydro-1H-pyrazol-3-yl)-2H-chromen-2-one (7j) exhibited the most potent tyrosinase inhibitory activity with IC50 value 0.00458 ± 0.00022 μM compared with the IC50 value of kojic acid is 16.84 ± 0.052 μM. The inhibition mechanism analyzed by Lineweaver–Burk plots revealed that the type of inhibition of compound 7j on tyrosinase was noncompetitive. The docking study against tyrosinase enzyme was also performed to determine the binding affinity of the compounds. The compound 7a showed the highest binding affinity (−10.20 kcal/mol) with active binding site of tyrosinase. The initial structure activity relationships (SARs) analysis suggested that further development of such compounds might be of interest. The statistics of our results endorses that compound 7j may serve as a structural template for the design and development of novel tyrosinase inhibitors.  相似文献   

11.
Ten azo compounds including azo-resveratrol (5) and azo-oxyresveratrol (9) were synthesized using a modified Curtius rearrangement and diazotization followed by coupling reactions with various phenolic analogs. All synthesized compounds were evaluated for their mushroom tyrosinase inhibitory activity. Compounds 4 and 5 exhibited high tyrosinase inhibitory activity (56.25% and 72.75% at 50 μM, respectively). The results of mushroom tyrosinase inhibition assays indicate that the 4-hydroxyphenyl moiety is essential for high inhibition and that 3,5-dihydroxyphenyl and 3,5-dimethoxyphenyl derivatives are better for tyrosinase inhibition than 2,5-dimethoxyphenyl derivatives. Particularly, introduction of hydroxyl or methoxy group into the 4-hydroxyphenyl moiety diminished or significantly reduced mushroom tryosinase inhibition. Among the synthesized azo compounds, azo-resveratrol (5) showed the most potent mushroom tyrosinase inhibition with an IC50 value of IC50 = 36.28 ± 0.72 μM, comparable to that of resveratrol, a well-known tyrosinase inhibitor.  相似文献   

12.
Alzheimer's disease (AD) is a complex neurological disorder with diverse underlying pathological processes. Several lines of evidence suggest that BACE1 is a key enzyme in the pathogenesis of AD and its inhibition is of particular importance in AD treatment. Ten new 3-hydrazinyl-1,2,4-triazines bearing pendant aryl phenoxy methyl-1,2,3-triazole were synthesized as multifunctional ligands against AD. We show that compounds containing Cl and NO2 groups at the para position of the phenyl ring, namely compounds 7c (IC50 = 8.55 ± 3.37 µM) and 7d (IC50 = 11.42 ± 2.01 µM), possess promising BACE1 inhibitory potential. Furthermore, we assessed the neuroprotective activities of 7c and 7d derivatives in PC12 neuronal cell line, which showed moderate protection against amyloid β peptide toxicity. In addition, compound 7d demonstrated metal chelating activity and moderate antioxidant potential (IC50 = 44.42 ± 7.33 µM). Molecular docking studies of these molecules revealed high-affinity binding to several amino acids of BACE1, which are essential for efficient inhibition. These results demonstrate that 1,2,4-triazine derivatives bearing an aryl phenoxy methyl-1,2,3-triazole have promising properties as therapeutic agents for AD.  相似文献   

13.
Bark of Quercus coccifera is widely used in folk medicine. We tested tyrosinase and α-glucosidase inhibitory effects of Q. coccifera bark extract and isolated compounds from it. The extract inhibited tyrosinase with an IC50 value of 75.13 ± 0.44 µg/mL. Among the isolated compounds, polydatin (6) showed potent tyrosinase inhibition compared to the positive control, kojic acid, with an IC50 value of 4.05 ± 0.30 µg/mL. The Q. coccifera extract also inhibited α-glucosidase significantly with an IC50 value of 3.26 ± 0.08 µg/mL. (-)-8-Chlorocatechin (5) was the most potent isolate, also more potent than the positive control, acarbose, with an IC50 value of 43.60 ± 0.67 µg/mL. According to the kinetic analysis, 6 was a noncompetitive and 5 was a competitive inhibitor of tyrosinase, and 5 was a noncompetitive α-glucosidase inhibitor. In the light of these findings, we performed in silico molecular docking studies for 5 and 6 with QM/MM optimizations to predict their tyrosinase inhibition mechanisms at molecular level and search for correlations with the in vitro results. We found that the ionized form of 5 (5i) showed higher affinity and more stable binding to tyrosinase catalytic site than its neutral form, while 6 bound to the predicted allosteric sites of the enzyme better than the catalytic site.  相似文献   

14.
A novel library of coumarin tagged 1,3,4 oxadiazole conjugates was synthesized and evaluated for their antiproliferative activities against MDA-MB-231 and MCF-7 breast cancer cell lines. The evaluation studies revealed that compound 9d was the most potent molecule with an IC50 value of <5?µM against the MCF-7 cell line. Interestingly, compounds 10b and 11a showed a similar trend with lower inhibitory concentration (IC50?=?7.07?µM), in Estrogen Negative (ER?) cells than Estrogen Positive (ER+) cells. Structure–activity relationship (SAR) studies revealed that conjugates bearing benzyl moieties (9b, 9c and 9d) had superior activities compared to their alkyl analogues. The most potent compound 9d showed ~1.4?times more potent activity than tamoxifen against MCF-7 cell line; while the introduction of sulfone unit in compounds 11a, 11b and 11c resulted in significant cytotoxicity against both MCF-7 and MDA-MB-231 cell lines. These results were further supported by docking studies, which revealed that the stronger binding affinity of the synthesized conjugates is due to the presence of sulfone unit attached to the substituted benzyl moiety in their pharmacophores.  相似文献   

15.
1,3,4-Thiadiazole derivatives bearing Schiff base moieties were designed, synthesized, and their tyrosinase inhibitory activities were evaluated. Some compounds displayed potent tyrosinase inhibitory activities, especially, 4-(((5-mercapto-1,3,4-thiadiazol-2-yl)-imino)methyl)-2-methoxy-phenol (14) exhibited superior inhibitory effect to the other compounds with an IC50 value of 0.036 μM. The structure–activity relationships (SARs) were preliminarily discussed and docking studies showed compound 14 had strong binding affinity to mushroom tyrosinase. Hydroxy might be the active groups. The inhibition kinetics study revealed that compounds (13 and 14) inhibited tyrosinase by acting as uncompetitive inhibitors. The LD50 value of the compound 14 was 5000 mg/kg.  相似文献   

16.
α-Glucosidase is considered as a therapeutic target for the treatment of type 2 diabetes mellitus (DM2). In current study, we synthesized pyrrolidine-2,5-dione (succinimide) and thiazolidine-2,4-dione derivatives and evaluated for their ability to inhibit α-Glucosidase. Pyrrolidine-2,5-dione derivatives (11a–o) showed moderate to poor α-glucosidase inhibition. Compound 11o with the IC50 value of 28.3 ± 0.28 µM emerged as a good inhibitor of α-glucosidase. Thiazolidine-2,4-dione and dihydropyrimidine (TZD-DHPM) hybrids (22a–c) showed excellent inhibitory activities. The most active compound 22a displayed IC50 value of 0.98 ± 0.008 µM. Other two compounds of this series also showed activity in low micromolar range. The in-vivo antidiabetic study of three compounds 11n, 11o and 22a were also determined using alloxan induced diabetes mice model. Compounds 11o and 22a showed significant hypoglycemic effect compared to the reference drug. In-vivo acute toxicity study showed the safety of these selected compounds. In-silico docking studies were carried out to rationalize the in-vitro results. The binding modes and bioassay results of TZD-DHPM hybrids showed that interactions with important residues appeared significant for high potency.  相似文献   

17.
A novel series of acridine linked to thioacetamides 9a–o were synthesized and evaluated for their α-glucosidase inhibitory and cytotoxic activities. All the synthesized compounds exhibited excellent α-glucosidase inhibitory activity in the range of IC50 = 80.0 ± 2.0–383.1 ± 2.0 µM against yeast α-glucosidase, when compared to the standard drug acarbose (IC50 = 750.0 ± 1.5 µM). Among the synthesized compounds, 2-((6-chloro-2-methoxyacridin-9-yl)thio)-N-(p-tolyl) acetamide 9b displayed the highest α-glucosidase inhibitory activity (IC50 = 80.0 ± 2.0 μM). The in vitro cytotoxic assay of compounds 9a–o against MCF-7 cell line revealed that only the compounds 9d, 9c, and 9n exhibited cytotoxic activity. Cytotoxic compounds 9d, 9c, and 9n did not show cytotoxic activity against the normal human cell lines HDF. Kinetic study revealed that the most potent compound 9b is a competitive inhibitor with a Ki of 85 μM. Furthermore, the interaction modes of the most potent compounds 9b and 9f with α-glucosidase were evaluated through the molecular docking studies.  相似文献   

18.
We have carried out the synthesis of new 4-oxoquinazolin-3(4H)-yl)furan-2-carboxamide derivatives by the reaction between isatoic anhydride, 2-furoic hydrazide and substituted salicylaldehydes in ethanol: water (5:5 v/v) solvent system using p-TSA as a catalyst under ultrasound irradiation at room temperature. The structures of newly synthesized compounds were confirmed through spectral techniques such as IR, 1H NMR, 13C NMR, and LCMS. The important features of this protocol include simple and easy workup procedure, reaction carried out at ambient temperature, use of ultrasound and high yield of oxoquinazolin-3(4H)-yl)furan-2-carboxamides in short reaction time. The synthesized compounds 4a–4j were screened against tyrosinase enzyme and all these compounds found to be potent inhibitors with much lower IC50 value of 0.028 ± 0.016 to 1.775 ± 0.947 µM than the standard kojic acid (16.832 ± 1.162 µM). The kinetics mechanism for compound 4e was analyzed by Lineweaver-Burk plots which revealed that compound inhibited tyrosinase non-competitively by forming an enzyme-inhibitor complex. Along with this all the synthesized compounds (4a4j) were scanned for their DPPH free radical scavenging ability. The outputs received through in vitro and in silico analysis are coherent to the each other with good binding energy values (kcal/mol) posed by synthesized ligands.  相似文献   

19.
A novel series of 5,6-dichloro-2-methyl-1H-benzimidazole derivatives was synthesized and then screened for their urease inhibitory activity. All compounds showed more potent inhibitory activity in the range of IC50 = 0.0294 ± 0.0015–0.1494 ± 0.0041 µM than thiourea (IC50 = 0.5117 ± 0.0159 µM), as a reference inhibitor. Among all the tested compounds, the compound 15 (IC50 = 0.0294 ± 0.0015 µM) having strong electron-withdrawing nitro group on the phenyl ring was recorded as the most potent inhibitor of urease. All compounds were docked at the active sites of the Jack bean urease enzyme to investigate the reason of the inhibitory activity and the possible binding interactions of enzyme-ligand complexes.  相似文献   

20.
Current study deals with the evaluation of indane-1,3-dione based compounds as new class of urease inhibitors. For that purpose, benzylidine indane-1,3-diones (130) were synthesized and fully characterized by different spectroscopic techniques including EI-MS, HREI-MS, 1H, and 13C NMR. All synthetic molecules 130 were evaluated for urease inhibitory activity and showed good to moderate inhibitory potential within the range of (IC50 = 11.60 ± 0.3–257.05 ± 0.7 µM) as compared to the standard acetohydroxamic acid (IC50 = 27.0 ± 0.5 µM). Compound 1 (IC50 = 11.60 ± 0.3 µM) was found to be most potent inhibitor amongst all derivatives. The key binding interactions of most active compounds within the enzyme pocket were evaluated through in silico studies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号