首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The present article describes the synthesis, in vitro urease inhibition and in silico molecular docking studies of a novel series of bi-heterocyclic bi-amides. The synthesis of title compounds was initiated by benzoylation, with benzoyl chloride (1), of the key starter ethyl 2-(2-amino-1,3-thiazol-4-yl)acetate (2) in weak basic aqueous medium followed by hydrazide formation, 4, and cyclization with CS2 to reach the parent bi-heterocyclic nucleophile, N-{4-[(5-sulfanyl-1,3,4-oxadiazol-2-yl)methyl]-1,3-thiazol-2-yl}benzamide (5). Various electrophiles, 8a–l, were synthesized by a two-step process and these were finally coupled with 5 to yield the targeted bi-heterocyclic bi-amide molecules, 9a–l. The structures of the newly synthesized products were corroborated by IR, 1H NMR, 13C NMR, EI-MS and elemental analysis. The in vitro screening of these molecules against urease explored that most of the compounds exhibit potent inhibitory potential against this enzyme. The compound 9j, with IC50 value of 2.58?±?0.02?µM, exhibited most promising inhibitory activity among the series, relative to standard thiourea having IC50 value of 21.11?±?0.12?µM. In silico studies fully augmented the experimental enzyme inhibition results. Chemo-informatics analysis showed that synthesized compounds (9a–l) mostly obeyed the Lipinski's rule. Molecular docking study suggested that ligand 9j exhibited good binding energy value (?7.10?kcal/mol) and binds within the active region of target protein. So, on the basis of present investigation, it was inferred that 9j may serve as a novel scaffold for designing more potent urease inhibitors.  相似文献   

2.
A novel triazole derivatives(±)-2-(hydroxymethyl)-7,8-dihydro-1H-indeno[5,4-b]furan-6(2H)-one (12a–j) were designed and synthesized by the reaction between racemic azide and terminal acetylenes under click chemistry reaction conditions followed by biological evaluation as angiotensin converting enzyme (ACE) inhibitors. β-Amino alcohol derivatives of 1-indanone (15a–l) were synthesized from 5-hydroxy indanone, it was reacted with epichlorohydrin and followed by oxirane ring opening with various piperazine derivatives. Among the newly synthesized compounds 12b (IC50: 1.388024 µM), 12g (IC50: 1.220696 µM), 12j (IC50: 1.312428 µM) and 15k (IC50: 1.349671 µM) and 15l (IC50: 1.330764 µM) emerged as most active non-carboxylic acid ACE inhibitors with minimal toxicity comparable to clinical drug Lisinopril.  相似文献   

3.
A series of 2-(chloromethyl)-3-(4-methyl-6-oxo-5-[(E)-phenyldiazenyl]-2-thioxo-5,6-dihydropyrimidine-1(2H)-yl)quinazoline-4(3H)-ones 9a-j was synthesized by treating 2-(chloroacetyl)amino benzoic acid with 3-amino-6-methyl-5-[(E)-phenyldiazenyl]-2-thioxo-2,5-dihydropyrimidine-4(3H)-one 8a-j and was screened for in vitro antibacterial activities against a representative panel of Gram-positive and Gram-negative bacteria. The compounds were synthesized in excellent yields and the structures were corroborated on the basis of IR, 1H NMR, Mass and elemental analysis data. All the synthesized compounds elicited the potent inhibitory action against all the tested bacterial stains. Furthermore, in order to explore the antioxidant potential of newly synthesized compounds, the free radical scavenging activity measurement were performed by the 1,1-diphenyl-2-picryl-hydrazyl (DPPH) assay method. It is revealed from the antioxidant screening results that the compounds 9c and f manifested profound antioxidant potential.  相似文献   

4.
The present study describes the synthesis of two new series of 3-hydroxy-N-(4-oxo-2-phenyl-1,3-thiazinan-3-yl)-8-(trifluoromethyl)quinoline-2-carboxamide derivatives (4aj) and 3-((7-chloroquinolin-4-ylamino)methyl)-2-phenyl-1,3-thiazinan-4-one derivatives (5a7j). All the compounds were synthesized in moderate to good yield by one-pot three component cyclo-condensation reaction. The newly synthesized compounds were characterized by FT-IR, 1H, 13C NMR and elemental analysis. The compounds were screened for their in vitro antibacterial activity against a panel of pathogenic bacterial strains, antitubercular activity against Mycobacterium tuberculosis H37Rv and also for their in vitro antimalarial activity against Plasmodium falciparum. Among the synthesized compounds two of them (4f and 5f) showed excellent antibacterial activity against C. tetani at 15.6 μg/mL. Some of them exhibited excellent antitubercular (4f & 5f) and good antimalarial (4f, 5f & 6f) activity compared with the first line drugs.  相似文献   

5.
Targeting of tyrosinase has proven to be the best means of identifying safe, efficacious, and potent tyrosinase inhibitors for whitening skin. We designed and synthesized ten NAB (N-(acryloyl)benzamide) derivatives (1a–1j) using the Horner-Wadsworth-Emmons olefination of diethyl (2-benzamido-2-oxoethyl)phosphonate and appropriate benzaldehydes. A mushroom tyrosinase inhibitory assay showed compounds 1a (36.71 ± 2.14% inhibition) and 1j (25.99 ± 2.77% inhibition) inhibited tyrosinase more than the other eight NAB derivatives and kojic acid (21.56 ± 2.93% inhibition), and docking studies indicated 1a (−6.9 kcal/mole) and 1j (−7.5 kcal/mole) had stronger binding affinities for tyrosinase than kojic acid (−5.7 kcal/mole). At a concentration of 25 μM, 1a and 1j were nontoxic in B16F10 melanoma cells and exhibited stronger tyrosinase inhibition (59.70% and 76.77%, respectively) than kojic acid (50.30% inhibition) or arbutin (41.78% inhibition at 400 μM). Similarly, in B16F10 melanoma cells, compounds 1a and 1j at 25 μM decreased total melanin content by 47.97% and 61.77%, respectively (kojic acid; 38.98%). Similarities between inhibitions of tyrosinase activity and melanin contents suggested the anti-melanogenic effects of 1a and 1j were due to tyrosinase inhibition. The excellent DPPH scavenging activity of 1j suggests it might enhance in vivo effect on melanin contents. The study suggests compound 1j offers a potential starting point for the development of safe, potent tyrosinase inhibitors.  相似文献   

6.
A series of novel benzo[6,7]cyclohepta[1,2-b]pyridine-1,2,3-triazole hybrids (7a–j & 8a–j) have been designed and synthesized in excellent yields by Huisgen’s [3+2] cyclo addition reaction of 3-(azidomethyl)-2-methyl-6,7-dihydro-5H-benzo[6,7]cyclohepta[1,2-b]pyridine (5) with various alkynes 6 in presence of copper sulphate and sodium ascorbate and their structures were confirmed by IR, 1H NMR, 13C NMR and HRMS. The newly synthesized compounds 7a–j & 8a–j were evaluated for their in vitro anti-mycobacterial activity against Mycobacterium tuberculosis H37Rv (ATCC 27294). Among the compounds tested, the compounds 7i and 8g displayed most potent activity with MIC value of 1.56?µg/mL with low cytotoxicity.  相似文献   

7.
A new series of 2,3-disubstituted quinazolin-4(3H)-one compounds including oxadiazole and furan rings was synthesized. Their inhibitory activities on urease were assessed in vitro. All newly synthesized compounds exhibited potent urease inhibitory activity in the range of IC50 = 1.55 ± 0.07–2.65 ± 0.08 µg/mL, when compared with the standard urease inhibitors such as thiourea (IC50 = 15.08 ± 0.71 µg/mL) and acetohydroxamic acid (IC50 = 21.05 ± 0.96 µg/mL). 2,3-Disubstituted quinazolin-4(3H)-one derivatives containing furan ring (3a-e) were found to be the most active inhibitors when compared with the compounds 2a-e bearing oxadiazole ring. Compound 3a, bearing 4-chloro group on phenyl ring, was found as the most effective inhibitor of urease with the IC50 value of 1.55 ± 0.11 µg/mL. The molecular docking studies of the newly synthesized compounds were performed to identify the probable binding modes in the active site of the Jack bean urease (JBU) enzymes.  相似文献   

8.
2-(4-Fluorophenyl)-quinazolin-4(3H)-one (FQ) was synthesized, and its structure was identified with 1H nuclear magnetic resonance (1H NMR), 13C nuclear magnetic resonance (13C NMR), fourier transform infrared spectroscopy (FTIR), and high resolution mass spectrometry (HRMS). From the enzyme analysis, the results showed that it could inhibit the diphenolase activity of tyrosinase (IC50 = 120 ± 2 μM). Furthermore, the results of kinetic studies showed that the compound was a reversible mixed-type inhibitor, and that the inhibition constants were determined to be 703.2 (KI) and 222.1 μM (KIS). The results of fluorescence quenching experiment showed that the compound could interact with tyrosinase and the substrates (tyrosine and l-DOPA). Molecular docking analysis revealed that the mass transfer rate was affected by FQ blocking the enzyme catalytic center. In brief, current study identified a novel tyrosinase inhibitor which deserved further study for hyperpigmentation drugs.  相似文献   

9.
The enzyme tyrosinase plays a vital role in melanin biosynthesis and enzymatic browning of vegetables and fruits. A series of novel quinolinyl thiourea analogues (11a-j) were synthesized by reaction of 3-aminoquinoline and corresponding isothiocyanates, in moderate to excellent yields with different substitutions and their inhibitory effect on mushroom tyrosinase and free radical scavenging activity were evaluated. The compound N-(quinolin-3-ylcarbamothioyl)hexanamide (11c) exhibited the maximum tyrosinase inhibitory effect (IC50 = 0.0070 ± 0.0098 µM) compared to other derivatives and the reference Kojic acid (IC50 = 16.8320 ± 0.0621 µM). The docking studies were carried out and the compound (11c) showed most negative estimated free energy of −7.2 kcal/mol in mushroom tyrosinase active site. The kinetic analysis revealed that the compound (11c) inhibits the enzyme tyrosinase non-competitively to form the complex of enzyme and inhibitor. The results revealed that 11c could be identified as putative lead compound for the design of efficient tyrosinase inhibitors.  相似文献   

10.
A series of kojic acid-derived compounds 6a-p bearing aryloxymethyl-1H-1,2,3-triazol-1-yl moiety were designed by modifying primary alcoholic group of kojic acid as tyrosinase inhibitors. The target compounds 6a-p were synthesized via click reaction. All compounds showed very potent anti-tyrosinase activity (IC50s = 0.06–6.80 µM), being superior to reference drug, kojic acid. In particular, the naphthyloxy analogs 6o and 6p were found to be 31–155 times more potent than kojic acid. The metal-binding study of selected compound 6o revealed that the prototype compound possesses metal-chelating ability, particularly with Cu2+ ions. The promising compounds 6o and 6p had acceptable safety profile as demonstrated by cytotoxicity assay against melanoma (B16) cell line and Human Foreskin Fibroblast (HFF) cells.  相似文献   

11.
A series of coumarinyl-pyrazolinyl substituted thiazoles derivatives were synthesized and their inhibitory effects on the DPPH and mushroom tyrosinase were evaluated. The results showed that all of the synthesized compounds exhibited significant mushroom tyrosinase inhibitory activities. In particular, 3-(5-(4-(benzyloxy)-3-methoxyphenyl)-1-(4-(4-bromophenyl)thiazol-2-yl)-4,5-dihydro-1H-pyrazol-3-yl)-2H-chromen-2-one (7j) exhibited the most potent tyrosinase inhibitory activity with IC50 value 0.00458 ± 0.00022 μM compared with the IC50 value of kojic acid is 16.84 ± 0.052 μM. The inhibition mechanism analyzed by Lineweaver–Burk plots revealed that the type of inhibition of compound 7j on tyrosinase was noncompetitive. The docking study against tyrosinase enzyme was also performed to determine the binding affinity of the compounds. The compound 7a showed the highest binding affinity (−10.20 kcal/mol) with active binding site of tyrosinase. The initial structure activity relationships (SARs) analysis suggested that further development of such compounds might be of interest. The statistics of our results endorses that compound 7j may serve as a structural template for the design and development of novel tyrosinase inhibitors.  相似文献   

12.
A total of twenty-two novel coumarin triazole hybrids (4a-4k and 6a-6k) were synthesized from orcinol in good to excellent yields of 70–94%. The structures of all the synthesized compounds were elucidated by spectroscopic techniques such as 1H NMR, 13C NMR, and HRMS. The anti-inflammatory potential of synthesized compounds was investigated against the proinflammatory cytokine, TNF-α on U937 cell line and compounds 4d, 4j, and 6j were found to exhibit promising anti-inflammatory activity. These three compounds were further screened against TNF-α on LPS-stimulated RAW 264.7 cells, which confirm their anti-inflammatory potential. Furthermore, the above said active compounds were tested for their inhibitory effect on RANKL-induced osteoclastogenesis in RAW 264.7 cells by using tartrate resistant acid phosphatase (TRAP) staining assay at 10 µM. Molecular mechanism studies demonstrated that compound 4d exhibited dose dependent inhibition of RANKL-induced osteoclastogenesis by suppression of the NF-kB pathway. Thus, compound 4d is a promising candidate for further optimization to develop as a potent anti-osteoporotic agent.  相似文献   

13.
A novel series of benzoic acid N′-[2-(4-benzothiazol-2-yl-piperazin-1-yl)-acetyl]-hydrazides 6a–j were synthesized and characterized by IR, 1H, 13C NMR, elemental and mass spectral analyses. The in-vitro cytotoxicity and cell viability assay of the synthesized compounds 6a–j were evaluated against Dalton’s lymphoma ascites (DLA) cells. Our results showed that compound 6c with a bromo group on phenyl ring has showed promising antiproliferative efficacy. Further investigation of compound 6c on in-vivo treatment model depicts the increased tumor suppression through inhibition of angiogenesis.  相似文献   

14.
In this Letter, we report the structure–activity relationship (SAR) studies on series of positional isomers of 5(6)-bromo-1-[(phenyl)sulfonyl]-2-[(4-nitrophenoxy)methyl]-1H-benzimidazoles derivatives 7(aj) and 8(aj) synthesized in good yields and characterized by 1H NMR, 13C NMR and mass spectral analyses. The crystal structure of 7a was evidenced by X-ray diffraction study. The newly synthesized compounds were evaluated for their in vitro antibacterial activity against Staphylococcus aureus, (Gram-positive), Escherichia coli and Klebsiella pneumoniae (Gram-negative), antifungal activity against Candida albicans, Aspergillus flavus and Rhizopus sp. and antitubercular activity against Mycobacterium tuberculosis H37Rv, Mycobacterium smegmatis, Mycobacterium fortuitum and MDR-TB strains. The synthesized compounds displayed interesting antimicrobial activity. The compounds 7b, 7e and 7h displayed significant activity against Mycobacterium tuberculosis H37Rv strain.  相似文献   

15.
Cycloaddition reaction of 4-chloro-2-oxo-2H-chromene-3-carbaldehydes (3a-g) and 4-chloro-2H-chromene-3-carbaldehydes (7a-h) with activated alkynes (4a-b) provided the 2-oxo-2H-chromenyl-5-oxo-2,5-dihydrofuran-3-carboxylates (5a-n) and 2H-chromenyl-5-oxo-2,5-dihydrofuran-3-carboxylates (8a-p). All the prepared compounds were screened for anti-inflammatory activity. In vitro anti-inflammatory activity data demonstrated that the compounds 5g, 5i, 5k-l and 8f are effective among the tested compounds against TNF-α (1.108 ± 0.002, 0.423 ± 0.022, 0.047 ± 0.001, 0.070 ± 0.002 and 0.142 ± 0.001 µM) in comparison with standard compound Prednisolone (0.033 ± 0.002 µM). Based on in vitro results, three compounds (5i, 5k and 8f) have been selected for in vivo experiments and these compounds are identified as better compounds with respect to anti-inflammatory activity in LPS induced mice model. Compound 5i was identified as potent and showed significant reduction in TNF-α and IL-6.  相似文献   

16.
A novel series of 2-(5-methyl-1,3-diphenyl-1H-pyrazol-4-yl)-5-phenyl-1,3,4-oxadiazoles 7(am) were synthesized either by cyclization of N′-benzoyl-5-methyl-1,3-diphenyl-1H-pyrazole-4-carbohydrazide 4a using POCl3 at 120 °C or by oxidative cyclization of hydrazones derived from various arylaldehyde and (E)-N′-benzylidene-5-methyl-1,3-diphenyl-1H-pyrazole-4-carbohydrazide 5(ad) using chloramine-T as oxidant. Newly synthesized compounds were characterized by analytical and spectral (IR, 1H NMR, 13C NMR and LC–MS) methods. The synthesized compounds were evaluated for their antimicrobial activity and were compared with standard drugs. The compounds demonstrated potent to weak antimicrobial activity. Among the synthesized compounds, compound 7m emerged as an effective antimicrobial agent, while compounds 7d, 7f, 7i and 7l showed good to moderate activity. The minimum inhibitory concentration of the compounds was in the range of 20–50 μg mL−1 against bacteria and 25–55 μg mL−1 against fungi. The title compounds represent a novel class of potent antimicrobial agents.  相似文献   

17.
Thirteen (Z)-4-(substituted benzylidene)-3-phenylisoxazol-5(4H)-ones were designed to confirm the geometric effect of the double bond of the β-phenyl-α, β-unsaturated carbonyl scaffold on tyrosinase inhibitory activity. Compounds 1a1m, which all possessed the (Z)-β-phenyl-α, β-unsaturated carbonyl scaffold, were synthesized using a tandem reaction consisting of an isoxazolone ring formation and a Knoevenagel condensation, and three starting materials, ethyl benzoylacetate, hydroxylamine and benzaldehydes. Some of the compounds showed inhibitory activity against mushroom tyrosinase as potent as compounds containing the “(E)”-β-phenyl-α, β-unsaturated carbonyl scaffold. Compounds 1c and 1m showed greater inhibitory activity than kojic acid: IC50?=?32.08?±?2.25?μM for 1c; IC50?=?14.62?±?1.38?μM for 1m; and IC50?=?37.86?±?2.21?μM for kojic acid. A kinetic study indicated that 1m inhibited tyrosinase in a competitive manner and that it probably binds to the enzyme’s active site. In silico docking simulation supported binding of 1m (?7.6?kcal/mol) to the active site of tyrosinase with stronger affinity than kojic acid (?5.7?kcal/mol). Similar results were obtained using cell-based assays, and in B16F10 cells, compound 1m dose-dependently inhibited tyrosinase activity and melanogenesis. These results indicate the anti-melanogenic effect of compound 1m is due to the inhibition of tyrosinase and (Z)-isomer of the β-phenyl-α, β-unsaturated carbonyl scaffold can, like its congener the (E)-isomer, act as an excellent scaffold for tyrosinase inhibition.  相似文献   

18.
To seek the new medicinal potential of sulfadiazine drug, the free amino group of sulfadiazine was exploited to obtain acyl/aryl thioureas using simple and straightforward protocol. Acyl/aryl thioureas are well recognized bioactive pharmacophore containing moieties. A new series (4a4j) of sulfadiazine derived acyl/aryl thioureas was synthesized and characterized through spectroscopic and elemental analysis. The synthesized derivatives 4a4j were subjected to calf intestinal alkaline phosphatase (CIAP) activity. The derivative 4a4j showed better inhibition potential compared to standard monopotassium phosphate (MKP). The compound 4c exhibited higher potential in the series with IC50 0.251?±?0.012?µM (standard KH2PO4 4.317?±?0.201?µM). Lineweaver-Burk plots revealed that most potent derivative 4c inhibition CIAP via mixed type pathway. Pharmacological investigations showed that synthesized compounds 4a4j obey Lipinsk’s rule. ADMET parameters evaluation predicted that these molecule show significant lead like properties with minimum possible toxicity and can serve as templates in drug designing. The synthetic compounds show none mutagenic and irritant behavior. Molecular docking analysis showed that compound 4c interacts with Asp273, His317 and Arg166 amino acid residues.  相似文献   

19.
New pyridazino[4,5-b]indol-4-ones and pyridazin-3(2H)-one analogs were synthesized and their inhibitory activities against DYRK1A, CDK5/p25, GSK3α/β and p110-α isoform of PI3K evaluated using harmine as reference. Both furan-2-yl 10 and pyridin-4-yl 19 from the two different series, exhibited submicromolar IC50 against DYRK1A with no activities against the three other kinases. In addition, compound 10 exhibited antiproliferative activities in the Huh-7, Caco2 and MDA-MB-231 cell lines.  相似文献   

20.
During our continued search for strong skin whitening agents over the past ten years, we have investigated the efficacies of many tyrosinase inhibitors containing a common (E)-β-phenyl-α,β-unsaturated carbonyl scaffold, which we found to be essential for the effective inhibition of mushroom and mammalian tyrosinases. In this study, we explored the tyrosinase inhibitory effects of 2,3-diphenylacrylic acid (2,3-DPA) derivatives, which also possess the (E)-β-phenyl-α,β-unsaturated carbonyl motif. We synthesized fourteen (E)-2,3-DPA derivatives 1a1n and one (Z)-2,3-DPA-derivative 1l′ using a Perkin reaction with phenylacetic acid and appropriate substituted benzaldehydes. In our mushroom tyrosinase assay, 1c showed higher tyrosinase inhibitory activity (76.43 ± 3.53%, IC50 = 20.04 ± 1.91 µM) with than the other 2,3-DPA derivatives or kojic acid (21.56 ± 2.93%, IC50 = 30.64 ± 1.27 μM). Our mushroom tyrosinase inhibitory results were supported by our docking study, which showed compound 1c (−7.2 kcal/mole) exhibited stronger binding affinity for mushroom tyrosinase than kojic acid (−5.7 kcal/mole). In B16F10 melanoma cells (a murine cell-line), 1c showed no cytotoxic effect up to a concentration of 25 μM and exhibited greater tyrosinase inhibitory activity (68.83%) than kojic acid (49.39%). In these cells, arbutin (a well-known tyrosinase inhibitor used as the positive control) only inhibited tyrosinase by 42.67% even at a concentration of 400 μM. Furthermore, at 25 µM, 1c reduced melanin contents in B16F10 melanoma cells by 24.3% more than kojic acid (62.77% vs. 38.52%). These results indicate 1c is a promising candidate treatment for pigmentation-related diseases and potential skin whitening agents.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号