首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Ultrasound mediated efficient synthesis of new 4-oxoquinazolin-3(4H)-yl)furan-2-carboxamides as potent tyrosinase inhibitors: Mechanistic approach through chemoinformatics and molecular docking studies
Institution:1. Department of Chemistry, Quaid-I-Azam University, Islamabad 45320, Pakistan;2. Department of Biology, College of Science, University of Bahrain, Sakhir, 32038 Kingdom of Bahrain;3. Department of PCSIR head office ministry of science and technology Islamabad, Pakistan;4. Institute of Molecular Biology and Biotechnology/(IMBB), The University of Lahore, 1-KM, Defense Road, Bhubtian Chowk, Lahore, Pakistan;5. Department of Biological Sciences, College of Natural Sciences, Kongju National University, 56 Gongjudehak-Ro, Gongju, Chungnam 314-701, Republic of Korea;6. Departamento de Física, Facultad de Ciencias Exactas, Universidad Nacional de La Plata e Instituto de Física La Plata, IFLP (UNLP, CONICET, CCT-La Plata), C. C. 67, 1900 La Plata, Argentina;7. CEQUINOR (UNLP-CONICET, CCT-La Plata), Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Boulevard 120 e/ 60 y 64 Nº 1465 La Plata B1900, Buenos Aires, Argentina
Abstract:We have carried out the synthesis of new 4-oxoquinazolin-3(4H)-yl)furan-2-carboxamide derivatives by the reaction between isatoic anhydride, 2-furoic hydrazide and substituted salicylaldehydes in ethanol: water (5:5 v/v) solvent system using p-TSA as a catalyst under ultrasound irradiation at room temperature. The structures of newly synthesized compounds were confirmed through spectral techniques such as IR, 1H NMR, 13C NMR, and LCMS. The important features of this protocol include simple and easy workup procedure, reaction carried out at ambient temperature, use of ultrasound and high yield of oxoquinazolin-3(4H)-yl)furan-2-carboxamides in short reaction time. The synthesized compounds 4a–4j were screened against tyrosinase enzyme and all these compounds found to be potent inhibitors with much lower IC50 value of 0.028 ± 0.016 to 1.775 ± 0.947 µM than the standard kojic acid (16.832 ± 1.162 µM). The kinetics mechanism for compound 4e was analyzed by Lineweaver-Burk plots which revealed that compound inhibited tyrosinase non-competitively by forming an enzyme-inhibitor complex. Along with this all the synthesized compounds (4a4j) were scanned for their DPPH free radical scavenging ability. The outputs received through in vitro and in silico analysis are coherent to the each other with good binding energy values (kcal/mol) posed by synthesized ligands.
Keywords:Ultrasound sonication  Tyrosinase  Lipinski’s rule  Drug score  Molecular docking
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号