首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cell-penetrating peptides (CPPs) constitute a family of peptides with the characteristic ability to cross biological membranes and deliver cargo into the intracellular milieu. Several CPPs have been proposed for delivery of polypeptides and proteins into cells through either of two strategies: covalent or complexed in a non-covalent fashion. Members of the PEP family are primary amphipathic peptides which have been shown to deliver peptides and proteins into a wide variety of cells through formation of non-covalent complexes. CADY is a secondary amphipathic peptide which has been demonstrated to deliver short nucleic acids, in particular siRNA with high efficiency. Here we review the characteristics of the PEP and CADY carriers and describe a novel derivative of CADY termed CADY2, which also presents sequence similarities to Pep1. We have compared Pep1, CADY and CADY2 in their efficiency to interact with and internalize short fluorogenic peptides and proteins into cultured cells, and provide evidence that CADY2 can interact with proteins and peptides and deliver them efficiently into living cells, similar to Pep1, but in contrast to CADY which is unable to deliver any peptide, even short negatively charged peptides. This is the first study to investigate the influence of the cargo on the interactions between PEP and CADY carriers, thereby providing novel insights into the physicochemical parameters underlying interactions and cellular uptake of peptides and proteins by these non-covalent CPPs.  相似文献   

2.
Cell-penetrating peptides (CPPs), which are usually short basic peptides, are able to cross cell membranes and convey bioactive cargoes inside cells. CPPs have been widely used to deliver inside cells peptides, proteins, and oligonucleotides; however, their entry mechanisms still remain controversial. A major problem concerning CPPs remains their lack of selectivity to target a specific type of cell and/or an intracellular component. We have previously shown that myristoylation of one of these CPPs affected the intracellular distribution of the cargo. We report here on the synthesis of glycosylated analogs of the cell-penetrating peptide (R6/W3): Ac-RRWWRRWRR-NH2. One, two, or three galactose(s), with or without a spacer, were introduced into the sequence of this nonapeptide via a triazole link, the Huisgen reaction being achieved on a solid support. Four of these glycosylated CPPs were coupled via a disulfide bridge to the proapoptotic KLAK peptide, (KLAKLAKKLAKLAK), which alone does not enter into cells. The effect on cell viability and the uptake efficiency of different glycosylated conjugates were studied on CHO cells and were compared to those of the nonglycosylated conjugates: (R6/W3)S-S-KLAK and penetratinS-S-KLAK. We show that glycosylation significantly increases the cell viability of CHO cells compared to the nonglycosylated conjugates and concomitantly decreases the internalization of the KLAK cargo. These results suggest that glycosylation of CPP may be a key point in targeting specific cells.  相似文献   

3.
4.
细胞穿膜肽(Cell-penetrating peptides,CPPs)是一类能够穿过细胞膜或组织屏障的短肽。CPPs可通过内吞和直接穿透等机制运载蛋白质、RNA、DNA等生物大分子进入细胞内发挥其效应功能。相比于其他非天然的化学分子,CPPs具有生物相容性佳、对细胞造成的毒性小、完成入胞转运后可降解、并能与生物活性蛋白直接融合重组表达等优点,因此成为以胞内分子为靶标的药物递送技术发展的重要工具,并在生物医学研究领域具有良好的应用前景。文中针对CPPs的分类特点、入胞转运机制及其治疗应用的新近研究进展进行综述和讨论。  相似文献   

5.
Cell-penetrating peptides (CPPs) have been extensively studied during the past decade, because of their ability to promote the cellular uptake of various cargo molecules, e.g., oligonucleotides and proteins. In a recent study of the uptake of several analogues of penetratin, Tat(48-60) and oligoarginine in live (unfixed) cells [Thorén et al. (2003) Biochem. Biophys. Res. Commun. 307, 100-107], it was found that both endocytotic and nonendocytotic uptake pathways are involved in the internalization of these CPPs. In the present study, the membrane interactions of some of these novel peptides, all containing a tryptophan residue to facilitate spectroscopic studies, are investigated. The peptides exhibit a strong affinity for large unilamellar vesicles (LUVs) containing zwitterionic and anionic lipids, with binding constants decreasing in the order penetratin > R(7)W > TatP59W > TatLysP59W. Quenching studies using the aqueous quencher acrylamide and brominated lipids indicate that the tryptophan residues of the peptides are buried to a similar extent into the membrane, with an average insertion depth of approximately 10-11 A from the bilayer center. The membrane topology of the peptides was investigated using an assay based on resonance energy transfer between tryptophan and a fluorescently labeled lysophospholipid, lysoMC, distributed asymmetrically in the membranes of LUVs. By determination of the energy transfer efficiency when peptide was added to vesicles with lysoMC present exclusively in the inner leaflet, it was shown that none of the peptides investigated is able to translocate across the lipid membranes of LUVs. By contrast, confocal laser scanning microscopy studies on carboxyfluorescein-labeled peptides showed that all of the peptides rapidly traverse the membranes of giant unilamellar vesicles (GUVs). The choice of model system is thus crucial for the conclusions about the ability of CPPs to translocate across lipid membranes. Under the conditions used in the present study, peptide-lipid interactions alone cannot explain the different cellular uptake characteristics exhibited by these peptides.  相似文献   

6.
7.
Cell-penetrating peptides (CPP) are broadly recognized as efficient non-viral vectors for the internalization of compounds such as peptides, oligonucleotides or proteins. Characterizing these carriers requires reliable methods to quantify their intracellular uptake. Flow cytometry on living cells is a method of choice but is not always applicable (e.g. big or polarized cells), so we decided to compare it to fluorescence spectroscopy on cell lysates. Surprisingly, for the internalization of a series of TAMRA-labeled conjugates formed of either cationic or amphipathic CPPs covalently coupled to a decamer peptide, we observed important differences in internalization levels between both methods.We partly explained these discrepancies by analyzing the effect of buffer conditions (pH, detergents) and peptide sequence/structure on TAMRA dye accessibility. Based on this analysis, we calculated a correction coefficient allowing a better coherence between both methods. However, an overestimated signal was still observable for both amphipathic peptides using the spectroscopic detection, which could be due to their localization at the cell membrane. Based on several in vitro experiments modeling events at the plasma membrane, we hypothesized that fluorescence of peptides entrapped in the membrane bilayer could be quenched by the tryptophan residues of close transmembrane proteins. During cell lysis, cell membranes are disintegrated liberating the entrapped peptides and restoring the fluorescence, explaining the divergences observed between flow cytometry and spectroscopy on lysates.Overall, our results highlighted major biases in the fluorescently-based quantification of internalized fluorescently-labeled CPP conjugates, which should be considered for accurate uptake quantification.  相似文献   

8.
Cell-penetrating peptides (CPP) are able to efficiently transport cargos across cell membranes without being cytotoxic to cells, thus present a great potential in drug delivery and diagnosis. While the role of cationic residues in CPPs has been well studied, that of Trp is still not clear. Herein 7 peptide analogs of RW9 (RRWWRRWRR, an efficient CPP) were synthesized in which Trp were systematically replaced by Phe residues. Quantification of cellular uptake reveals that substitution of Trp by Phe strongly reduces the internalization of all peptides despite the fact that they strongly accumulate in the cell membrane. Cellular internalization and biophysical studies show that not only the number of Trp residues but also their positioning in the helix and the size of the hydrophobic face they form are important for their internalization efficacy, the highest uptake occurring for the analog with 3 Trp residues. Using CD and ATR-FTIR spectroscopy we observe that all peptides became structured in contact with lipids, mainly in α-helix. Intrinsic tryptophan fluorescence studies indicate that all peptides partition in the membrane in about the same manner (Kp ~ 105) and that they are located just below the lipid headgroups (~ 10 Å) with slightly different insertion depths for the different analogs. Plasmon Waveguide Resonance studies reveal a direct correlation between the number of Trp residues and the reversibility of the interaction following membrane washing. Thus a more interfacial location of the CPP renders the interaction with the membrane more adjustable and transitory enhancing its internalization ability.  相似文献   

9.
Cell-penetrating peptides (CPPs) are able to traverse cellular membranes and deliver macromolecular cargo. Uptake occurs through both endocytotic and nonendocytotic pathways, but the molecular requirements for efficient internalization are not fully understood. Here we investigate how the presence of tryptophans and their position within an oligoarginine influence uptake mechanism and efficiency. Flow cytometry and confocal fluorescence imaging are used to estimate uptake efficiency, intracellular distribution and toxicity in Chinese hamster ovarian cells. Further, membrane leakage and lipid membrane affinity are investigated. The peptides contain eight arginine residues and one to four tryptophans, the tryptophans positioned either at the N-terminus, in the middle, or evenly distributed along the amino acid sequence. Our data show that the intracellular distribution varies among peptides with different tryptophan content and backbone spacing. Uptake efficiency is higher for the peptides with four tryptophans in the middle, or evenly distributed along the peptide sequence, than for the peptide with four tryptophans at the N-terminus. All peptides display low cytotoxicity except for the one with four tryptophans at the N-terminus, which was moderately toxic. This finding is consistent with their inability to induce efficient leakage of dye from lipid vesicles. All peptides have comparable affinities for lipid vesicles, showing that lipid binding is not a decisive parameter for uptake. Our results indicate that tryptophan content and backbone spacing can affect both the CPP uptake efficiency and the CPP uptake mechanism. The low cytotoxicity of these peptides and the possibilities of tuning their uptake mechanism are interesting from a therapeutic point of view.  相似文献   

10.
A number of cell-penetrating peptides (CPPs) have been characterized and their usefulness as delivery tools has been clarified. As one of the CPPs, model amphipathic peptide (MAP) was developed by integrating both hydrophobic and hydrophilic amino acids in its sequence. In our previous work, we designed MAP(Aib) by replacing five alanine (Ala) residues on the hydrophobic face of the helix in the MAP sequence with α-aminoisobutyric acid (Aib) residues, and the replacement resulted in higher helix propensity, stronger resistance to protease, and higher cell membrane permeability than MAP. As a next step, we examined the efficiency of oligonucleotide (ODN) delivery into cells by MAP(Aib) in comparison with that by MAP. The electrostatically formed MAP(Aib)/ODN complex was more easily taken up by cells than the MAP/ODN complex, and the ODN delivery by MAP(Aib) was via an endocytic pathway. We demonstrated that the incorporation of Aib residues into CPPs enhances the delivery of hydrophilic molecules, such as ODN, into cells.  相似文献   

11.
Internalization of peptides and proteins into live cells is an essential prerequisite for studies on intracellular signal pathways, for treatment of certain microbial diseases and for signal transduction therapy, especially for cancer treatment. Cell penetrating peptides (CPPs) facilitate the transport of cargo-proteins through the cell membrane into live cells. CPPs which allow formation of non-covalent complexes with the cargo are used primarily in this study due to the relatively easy handling procedure. Efficiency of the protein uptake is estimated qualitatively by fluorescence microscopy and quantitatively by SDS-PAGE. Using the CPP cocktail JBS-Proteoducin, the intracellular concentrations of a secondary antibody and bovine serum albumin can reach the micromolar range. Internalization of antibodies allows mediation of intracellular pathways including knock down of signal transduction. The high specificity and affinity of antibodies makes them potentially more powerful than siRNA. Thus, CPPs represent a significant new possibility to study signal transduction processes in competition or in comparison to the commonly used other techniques. To estimate the highest attainable intracellular concentrations of cargo proteins, the CPPs are tested for cytotoxicity. Cell viability and membrane integrity relative to concentration of CPPs are investigated. Viability as estimated by the reductive activity of mitochondria (MTT-test) is more sensitive to higher concentrations of CPPs versus membrane integrity, as measured by the release of dead cell protease. Distinct differences in uptake efficiency and cytotoxic effects are found using six different CPPs and six different adhesion and suspension cell lines.  相似文献   

12.
Cell penetrating peptides (CPPs) are short amphipathic and cationic peptides that are rapidly internalized across cell membranes. They can be used to deliver molecular cargo, such as imaging agents (fluorescent dyes and quantum dots), drugs, liposomes, peptide/protein, oligonucleotide/DNA/RNA, nanoparticles and bacteriophage into cells. The utilized CPP, attached cargo, concentration and cell type, all significantly affect the mechanism of internalization. The mechanism of cellular uptake and subsequent processing still remains controversial. It is now clear that CPP can mediate intracellular delivery via both endocytic and non-endocytic pathways. In addition, the orientation of the peptide and cargo and the type of linkage are likely important. In gene therapy, the designed cationic peptides must be able to 1) tightly condense DNA into small, compact particles; 2) target the condensate to specific cell surface receptors; 3) induce endosomal escape; and 4) target the DNA cargo to the nucleus for gene expression. The other studies have demonstrated that these small peptides can be conjugated to tumor homing peptides in order to achieve tumor-targeted delivery in vivo. On the other hand, one of the major aims in molecular cancer research is the development of new therapeutic strategies and compounds that target directly the genetic and biochemical agents of malignant transformation. For example, cell penetrating peptide aptamers might disrupt protein-protein interactions crucial for cancer cell growth or survival. In this review, we discuss potential functions of CPPs especially for drug and gene delivery in cancer and indicate their powerful promise for clinical efficacy.  相似文献   

13.
Cell penetrating peptides (CPPs) are peptides displaying the ability to cross cell membranes and transport cargo molecules inside cells. Several uptake mechanisms (endocytic or direct translocation through the membrane) are being considered, but the interaction between the CPP and the cell membrane is certainly a preliminary key point to the entry of the peptide into the cell. In this study, we used three basic peptides: RL9 (RRLLRRLRR-NH(2)), RW9 (RRWWRRWRR-NH(2)) and R9 (RRRRRRRRR-NH(2)). While RW9 and R9 were internalised into wild type Chinese Hamster Ovary cells (CHO) and glycosaminoglycan-deficient CHO cells, at 4°C and 37°C, RL9 was not internalised into CHO cells. To better understand the differences between RW9, R9 and RL9 in terms of uptake, we studied the interaction of these peptides with model lipid membranes. The effect of the three peptides on the thermotropic phase behaviour of a zwitterionic lipid (DMPC) and an anionic lipid (DMPG) was investigated with differential scanning calorimetry (DSC). The presence of negative charges on the lipid headgroups appeared to be essential to trigger the peptide/lipid interaction. RW9 and R9 disturbed the main phase transition of DMPG, whereas RL9 did not induce significant effects. Isothermal titration calorimetry (ITC) allowed us to study the binding of these peptides to large unilamellar vesicles (LUVs). RW9 and R9 proved to have about ten fold more affinity for DSPG LUVs than RL9. With circular dichroism (CD) and NMR spectroscopy, the secondary structure of RL9, RW9 and R9 in aqueous buffer or lipid/detergent conditions was investigated. Additionally, we tested the antimicrobial activity of these peptides against Escherichia coli and Staphylococcus aureus, as CPPs and antimicrobial peptides are known to share several common characteristics. Only RW9 was found to be mildly bacteriostatic against E. coli. These studies helped us to get a better understanding as to why R9 and RW9 are able to cross the cell membrane while RL9 remains bound to the surface without entering the cell.  相似文献   

14.
Cell penetrating peptides (CPPs) can cross cell membranes in a receptor independent manner and transport cargo molecules inside cells. These peptides can internalize through two independent routes: energy dependent endocytosis and energy independent translocation across the membrane, but the exact mechanisms are still unknown. The interaction of the CPP with different membrane components is certainly a preliminary key point that triggers internalization, such as the interaction with lipids to lead to the translocation process. In this study, we used two arginine-rich peptides, RW9 (RRWWRRWRR-NH(2)), which is a potent CPP, and RL9 (RRLLRRLRR-NH(2)) that, although binding tightly and accumulating on membranes, does not enter into cells. Using a set of experimental and theoretical techniques, we studied the binding, insertion and orientation of the peptides into different model membranes as well as the subsequent membrane reorganization. Herein we show that although the two peptides had rather similar behavior regarding lipid membrane interaction, subtle differences were found concerning the depth of peptide insertion, effect on the lipid chain ordering and kinetics of peptide insertion in the membrane, which altogether might explain their different cell internalization capacities. Molecular dynamics simulation studies show that some peptide molecules flipped their orientation over the course of the simulation such that the hydrophobic residues penetrated deeper in the lipid core region while Arg-residues maintained H-bonds with the lipid headgroups, serving as a molecular hinge in a conformation that appeared to correspond to the equilibrium one.  相似文献   

15.
Cell‐penetrating peptides (CPPs) are commonly defined by their shared ability to be internalized into eukaryotic cells, without inducing permanent membrane damage, and to improve cargo delivery. Many CPPs also possess antimicrobial action strong enough to selectively lyse microbes in infected mammalian cultures. pVEC, a CPP derived from cadherin, is able to translocate into mammalian cells, and it is also antimicrobial. Structure‐activity relationship and sequence alignment studies have suggested that the hydrophobic N‐terminus (LLIIL) of pVEC is essential for this peptide's uptake into eukaryotic cells. In this study, our aim was to examine the contribution of these residues to the antimicrobial action and the translocation mechanism of pVEC. We performed antimicrobial activity and microscopy experiments with pVEC and with del5 pVEC (N‐terminal truncated variant of pVEC) and showed that pVEC loses its antimicrobial effect upon deletion of the LLIIL residues, even though both peptides induce membrane permeability. We also calculated the free energy of the transport process using steered molecular dynamic simulations and replica exchange umbrella sampling simulations to compare the difference in uptake mechanism of the 2 peptides in atomistic detail. Despite the difference in experimentally observed antimicrobial activity, the simulations on the 2 peptides showed similar characteristics and the energetic cost of translocation of pVEC was higher than that of del5 pVEC, suggesting that pVEC uptake mechanism cannot be explained by simple passive transport. Our results suggest that LLIIL residues are key contributors to pVEC antibacterial activity because of irreversible membrane disruption.  相似文献   

16.
The efficacy of a pharmaceutical treatment is often countered by the inadequate membrane permeability, that prevents drugs from reaching their specific intracellular targets. Cell penetrating peptides (CPPs) are able to route across cells’ membrane various types of cargo, including drugs and nanoparticles. However, CPPs internalization mechanisms are not yet fully understood and depend on a wide variety of aspects. In this contest, the entry of a CPP into the lipid bilayer might induce molecular conformational changes, including marked variations on membrane’s mechanical properties. Understanding how the CPP does influence the mechanical properties of cells membrane is crucial to design, engineer and improve new and existing penetrating peptides. Here, all atom Molecular Dynamics (MD) simulations were used to investigate the interaction between different types of CPPs embedded in a lipid bilayer of dioleoyl phosphatidylcholine (DOPC). In a greater detail, we systematically highlighted how CPP properties are responsible for modulating the membrane bending modulus. Our findings highlighted the CPP hydropathy strongly correlated with penetration of water molecules in the lipid bilayer, thus supporting the hypothesis that the amount of water each CPP can route inside the membrane is modulated by the hydrophobic and hydrophilic character of the peptide. Water penetration promoted by CPPs leads to a local decrease of the lipid order, which emerges macroscopically as a reduction of the membrane bending modulus.  相似文献   

17.
Cell transduction pathways of transportans   总被引:1,自引:0,他引:1  
Attempts to unravel the cell translocation mechanism of a growing number of cell-penetrating peptides (CPP) have revealed molecular determinants essential for internalization ability. The peptide sequence and the charge have been proposed to be the major factors in determining the membrane interaction mode and subsequent internalization pathway. Recent research in this field has shifted to search and design of novel CPPs with predefined vectorial properties and elucidation of the mechanism of cell entry of CPPs with high cargo delivery efficiency. Here we present a map of interaction modes with cell surface and intracellular traffic of transportan and its analogue TP10 complexed with fluorescently labeled avidin or streptavidin-gold conjugates. The protein cargo complexed with either peptide is transduced into HeLa and Bowes cells mostly in the endocytic vesicles with heterogeneous morphology and size as demonstrated by transmission electron microscopy (TEM) and confocal laser scanning fluorescence microscopy. Most of the induced vesicles are large, with 0.5-2 mum diameter, probably macropinosomes, but the complexes are present also in smaller vesicles, suggesting involvement of different pathways. Later the majority of complexes are translocated from the cell periphery into vesicles of perinuclear region and partly to lysosomes. A fraction of transportan-streptavidin complexes is present also freely in cytoplasm, both in the close vicinity of plasma membrane and more centrally, suggesting the escape from endosomal vesicles, since vesicles with discontinuous membrane were also detected by TEM. The cell-translocation process of transportan-protein complexes is temperature dependent and strongly inhibited at 8-10 degrees C and blocked at 4 degrees C when only interaction with the plasma membrane takes place.  相似文献   

18.
“Cell penetrating peptides” (CPPs) are natural or synthetic peptides with the ability to interact with cell membranes in order to enter cells and/or deliver cargo. They attract considerable interest as permeation enhancers for oral delivery of therapeutic drugs with poor bioavailability, such as proteins or DNA. A main barrier is the intestinal epithelium where passage needs to proceed through a paracellular -and/or a transcellular pathway. Using an organ cultured mucosal explant model system and a selection of fluorescent polar -and lipophilic tracers, the aim of the present study was to investigate the interaction of two CPPs, melittin and Hiv-1 Tat, with the enterocyte brush border. Melittin belongs to the amphipathic class of CPPs, and within 0.5–1 h it bound to, and penetrated, the enterocyte brush border, causing leakage into the cytosol and increased paracellular passage into the lamina propria. Surprisingly, melittin also abolished endocytosis of tracers from the brush border into early endosomes in the terminal web region (TWEEs), excluding any permeation enhancing effect via such an uptake mechanism. Electron microscopy revealed that melittin caused an elongation of the brush border microvilli and a reduction in their diameter. HIV-1 Tat is a cationic CPP that is internalized by cells due to a sequence, mainly of arginines, from residue 49 to 57, and a peptide containing this sequence permeabilized enterocytes to a polar tracer by a leakage into the cytosol. In conclusion, the CPPs studied acted by causing leakage of tracers into the enterocyte cytosol, not by inducing endocytosis.  相似文献   

19.
Independently from the cell penetrating peptide uptake mechanism (endocytic or not), the interaction of the peptide with the lipid bilayer remains a common issue that needs further investigation. The cell penetrating or antimicrobial properties of exogenous peptides require probably different preliminary interactions with the plasma membrane. Herein, we have employed (31)P NMR, differential scanning calorimetry and CD to study the membrane interaction and perturbation mechanisms of two basic peptides with similar length but distinct charge distribution, penetratin (non-amphipathic) and RL16, a secondary amphipathic peptide. The peptide effects on the thermotropic phase behavior of large multilamellar vesicles of dimyristoylphosphatidylcholine (DMPC), dimyristoylphosphatidylglycerol (DMPG) and dipalmitoleoyl phosphatidylethanolamine (DiPoPE) were investigated. We have found that, even though both peptides are cationic, their interaction with zwitterionic versus anionic lipids is markedly distinct. Penetratin greatly affects the temperature, enthalpy and cooperativity of DMPG main phase transition but does not affect those of DMPC while RL16 presents opposite effects. Additionally, it was found that penetratin induces a negative curvature whereas RL16 induces a positive one, since a decrease in the fluid lamellar to inverted hexagonal phase transition temperature of DiPoPE (T(H)) was observed for penetratin and an increase for RL16. Contrary to penetratin, (31)P NMR of samples containing DMPC MLVs and RL16 shows an isotropic signal indicative of the formation of small vesicles, concomitant with a great decrease in sample turbidity both below and at the phase transition temperature. Opposite effects were also observed on DMPG where both peptides provoke strong aggregation and precipitation. Both CPPs adopt helical structures when contacting with anionic lipids, and possess a dual behavior by either presenting their cationic or hydrophobic domains towards the phospholipid face, depending on the lipid nature (anionic vs zwitterionic, respectively). Surprisingly, the increase of electrostatic interactions at the water membrane interface prevents the insertion of RL16 hydrophobic region in the bilayer, but is essential for the interaction of penetratin. Modulation of amphipathic profiles and charge distribution of CPPs can alter the balance of hydrophobic and electrostatic membrane interaction leading to translocation or and membrane permeabilisation. Penetratin has a relative pure CPP behavior whereas RL16 presents mixed CPP/AMP properties. A better understanding of those processes is essential to unveil their cell translocation mechanism.  相似文献   

20.
The identification of cell-penetrating peptides (CPPs) as vectors for the intracellular delivery of conjugated molecules such as peptides, proteins, and oligonucleotides has emerged as a significant tool to modulate biological activities inside cells. The mechanism of CPP uptake by the cells is still unclear, and appears to be both endocytotic and non-endocytotic, depending on the CPP and cell type. Moreover, it is also unknown whether cargo sequences have an effect on the uptake and cellular distribution properties of CPP sequences. Here, we combine results from quantitative fluorescence microscopy and binding to lipid membrane models to determine the effect of cargo peptide molecules on the cellular uptake and distribution of the arginine-rich CPPs, R7, and R7W, in live cells. Image analysis algorithms that quantify fluorescence were used to measure the relative amount of peptide taken up by the cell, as well as the extent to which the uptake was endocytotic in nature. The results presented here indicate that fusion of arginine-rich CPPs to peptide sequences reduces the efficiency of uptake, and dramatically changes the cellular distribution of the CPP from a diffuse pattern to one in which the peptides are mostly retained in endosomal compartments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号