首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 499 毫秒
1.
Co‐administration of beta‐lactam antibiotics and beta‐lactamase inhibitors has been a favored treatment strategy against beta‐lactamase‐mediated bacterial antibiotic resistance, but the emergence of beta‐lactamases resistant to current inhibitors necessitates the discovery of novel non‐beta‐lactam inhibitors. Peptides derived from the Ala46–Tyr51 region of the beta‐lactamase inhibitor protein are considered as potent inhibitors of beta‐lactamase; unfortunately, peptide delivery into the cell limits their potential. The properties of cell‐penetrating peptides could guide the design of beta‐lactamase inhibitory peptides. Here, our goal is to modify the peptide with the sequence RRGHYY that possesses beta‐lactamase inhibitory activity under in vitro conditions. Inspired by the work on the cell‐penetrating peptide pVEC, our approach involved the addition of the N‐terminal hydrophobic residues, LLIIL, from pVEC to the inhibitor peptide to build a chimera. These residues have been reported to be critical in the uptake of pVEC. We tested the potential of RRGHYY and its chimeric derivative as a beta‐lactamase inhibitory peptide on Escherichia coli cells and compared the results with the action of the antimicrobial peptide melittin, the beta‐lactam antibiotic ampicillin, and the beta‐lactamase inhibitor potassium clavulanate to get mechanistic details on their action. Our results show that the addition of LLIIL to the N‐terminus of the beta‐lactamase inhibitory peptide RRGHYY increases its membrane permeabilizing potential. Interestingly, the addition of this short stretch of hydrophobic residues also modified the inhibitory peptide such that it acquired antimicrobial property. We propose that addition of the hydrophobic LLIIL residues to the peptide N‐terminus offers a promising strategy to design novel antimicrobial peptides in the battle against antibiotic resistance. Copyright © 2017 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

2.
Cell‐penetrating peptides (CPPs) are peptides that cross cell membranes, either alone or while carrying molecular cargo. Although their interactions with mammalian cells have been widely studied, much less is known about their interactions with fungal cells, particularly at the biophysical level. We analyzed the interactions of seven CPPs (penetratin, Pep‐1, MPG, pVEC, TP‐10, MAP, and cecropin B) with the fungal pathogen Candida albicans using experiments and molecular simulations. Circular dichroism (CD) of the peptides revealed a structural transition from a random coil or weak helix to an α‐helix occurs for all peptides when the solvent is changed from aqueous to hydrophobic. However, CD performed in the presence of C. albicans cells showed that proximity to the cell membrane is not necessarily sufficient to induce this structural transition, as penetratin, Pep‐1, and MPG did not display a structural shift in the presence of cells. Monte Carlo simulations were performed to further probe the molecular‐level interaction with the cell membrane, and these simulations suggested that pVEC, TP‐10, MAP, and cecropin B strongly penetrate into the hydrophobic domain of the membrane lipid bilayer, inducing a transition to an α‐helical conformation. In contrast, penetratin, Pep‐1 and MPG remained in the hydrophilic region without a shift in conformation. The experimental data and MC simulations combine to explain how peptide structure affects their interaction with cells and their mechanism of translocation into cells (direct translocation vs. endocytosis). Our work also highlights the utility of combining biophysical experiments, biological experiments, and molecular modeling to understand biological phenomena.  相似文献   

3.
Palm C  Netzereab S  Hällbrink M 《Peptides》2006,27(7):1710-1716
Cell-penetrating peptides (CPPs) are carriers developed to improve mammalian cell uptake of important research tools such as antisense oligonucleotides and short interfering RNAs. However, the data on CPP uptake into non-mammalian cells are limited. We have studied the uptake and antimicrobial effects of the three representative peptides penetratin (derived from a non-mammalian protein), MAP (artificial peptide) and pVEC (derived from a mammalian protein) using fluorescence HPLC in four common model systems: insect cells (Sf9), gram-positive bacteria (Bacillus megaterium), gram-negative bacteria (Escherichia coli) and yeast (Saccharomyces cerevisiae). We demonstrate that non-mammalian cells internalize CPPs and a comparison of the uptake of the peptides show that the intracellular concentration and degradation of the peptides varies widely among organisms. In addition, these CPPs showed antimicrobial activity.  相似文献   

4.
VE-cadherin-derived cell-penetrating peptide, pVEC, with carrier functions   总被引:5,自引:0,他引:5  
Cell-penetrating peptides, CPPs, have been shown to translocate into living cells by a receptor-independent mechanism and to carry macromolecules over the plasma membrane. This article reports studies of the internalization of pVEC, an 18-amino acid-long peptide derived from the murine sequence of the cell adhesion molecule vascular endothelial cadherin, amino acids 615-632. Fluorophore-labeled pVEC entered four different cell lines tested: human aortic endothelial cells, brain capillary endothelial cells, Bowes melanoma cells, and murine brain endothelial cells. In order to evaluate the translocation efficiency of pVEC, we performed a side-by-side comparison with penetratin, a well-characterized CPP. The cellular uptake of pVEC was highest for murine brain endothelial cells. All cell lines tested contained equal or slightly higher concentrations of pVEC than penetratin. pVEC mainly accumulated in nuclear structures but was also found throughout the cells. Furthermore, pVEC functioned as a transporter of both a hexameric peptide nucleic acid molecule of 1.7 kDa and a 67-kDa protein, streptavidin-FITC, and cellular uptake of fluorophore-labeled pVEC took place at 4 degrees C, suggesting a nonendocytotic mechanism of translocation. In conclusion, our results indicate that pVEC is efficiently and rapidly taken up into cells and functions as a potent carrier peptide.  相似文献   

5.
Beta‐lactamase‐mediated bacterial drug resistance exacerbates the prognosis of infectious diseases, which are sometimes treated with co‐administration of beta‐lactam type antibiotics and beta‐lactamase inhibitors. Antimicrobial peptides are promising broad‐spectrum alternatives to conventional antibiotics in this era of evolving bacterial resistance. Peptides based on the Ala46–Tyr51 beta‐hairpin loop of beta‐lactamase inhibitory protein (BLIP) have been previously shown to inhibit beta‐lactamase. Here, our goal was to modify this peptide for improved beta‐lactamase inhibition and cellular uptake. Motivated by the cell‐penetrating pVEC sequence, which includes a hydrophobic stretch at its N‐terminus, our approach involved the addition of LLIIL residues to the inhibitory peptide N‐terminus to facilitate uptake. Activity measurements of the peptide based on the 45–53 loop of BLIP for enhanced inhibition verified that the peptide was a competitive beta‐lactamase inhibitor with a Ki value of 58 μM. Incubation of beta‐lactam‐resistant cells with peptide decreased the number of viable cells, while it had no effect on beta‐lactamase‐free cells, indicating that this peptide had antimicrobial activity via beta‐lactamase inhibition. To elucidate the molecular mechanism by which this peptide moves across the membrane, steered molecular dynamics simulations were carried out. We propose that addition of hydrophobic residues to the N‐terminus of the peptide affords a promising strategy in the design of novel antimicrobial peptides not only against beta‐lactamase but also for other intracellular targets. Copyright © 2015 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

6.
Herbig ME  Assi F  Textor M  Merkle HP 《Biochemistry》2006,45(11):3598-3609
The cell penetrating peptide (CPP) pVEC has been shown to translocate efficiently the plasma membrane of different mammalian cell lines by a receptor-independent mechanism without exhibiting cellular toxicity. This ability renders CPPs of broad interest in cell biology, biotechnology, and drug delivery. To gain insight into the interaction of CPPs with biomembranes, we studied the interaction of pVEC and W2-pVEC, an Ile --> Trp modification of the former, with phase-separated supported phospholipid bilayers (SPB) by atomic force microscopy (AFM). W2-pVEC induced a transformation of dipalmitoyl phosphatidylcholine (DPPC) domains from a gel phase state via an intermediate state with branched structures into essentially flat bilayers. With pVEC the transformation followed a similar pathway but was slower. Employing fluorescence polarization, we revealed the capability of the investigated peptides to increase the fluidity of DPPC domains as the underlying mechanism of transformation. Due to their tighter packing, sphingomyelin (SM) domains were not transformed. By combination, AFM observations, dynamic light scattering studies, and liposome leakage experiments indicated that bilayer integrity was not compromised by the peptides. Transformation of gel phase domains in SPB by CPPs represents a novel aspect in the discussion on uptake mechanisms of CPPs.  相似文献   

7.
Cell‐penetrating peptides (CPPs) are small peptides capable of crossing cellular membranes while carrying molecular cargo. Although they have been widely studied for their ability to translocate nucleic acids, small molecules, and proteins into mammalian cells, studies of their interaction with fungal cells are limited. In this work, we evaluated the translocation of eleven fluorescently labeled peptides into the important human fungal pathogens Candida albicans and C. glabrata and explored the mechanisms of translocation. Seven of these peptides (cecropin B, penetratin, pVEC, MAP, SynB, (KFF)3K, and MPG) exhibited substantial translocation (>80% of cells) into both species in a concentration‐dependent manner, and an additional peptide (TP‐10) exhibiting strong translocation into only C. glabrata. Vacuoles were involved in translocation and intracellular trafficking of the peptides in the fungal cells and, for some peptides, escape from the vacuoles and localization in the cytosol were correlated to toxicity toward the fungal cells. Endocytosis was involved in the translocation of cecropin B, MAP, SynB, MPG, (KFF)3K, and TP‐10, and cecropin B, penetratin, pVEC, and MAP caused membrane permeabilization during translocation. These results indicate the involvement of multiple translocation mechanisms for some CPPs. Although high levels of translocation were typically associated with toxicity of the peptides toward the fungal cells, SynB was translocated efficiently into Candida cells at concentrations that led to minimal toxicity. Our work highlights the potential of CPPs in delivering antifungal molecules and other bioactive cargo to Candida pathogens.  相似文献   

8.
Internalisation of cell-penetrating peptides into tobacco protoplasts   总被引:1,自引:0,他引:1  
Cells are protected from the surrounding environment by plasma membrane which is impenetrable for most hydrophilic molecules. In the last 10 years cell-penetrating peptides (CPPs) have been discovered and developed. CPPs enter mammalian cells and carry cargo molecules over the plasma membrane with a molecular weight several times their own. Known transformation methods for plant cells have relatively low efficiency and require improvement. The possibility to use CPPs as potential delivery vectors for internalisation in plant cells has been studied in the present work. We analyse and compare the uptake of the fluorescein-labeled CPPs, transportan, TP10, penetratin and pVEC in Bowes human melanoma cells and Nicotiana tabacum cultivar (cv.) SR-1 protoplasts (plant cells without cell wall). We study the internalisation efficiency of CPPs with fluorescence microscopy, spectrofluorometry and fluorescence-activated cell sorter (FACS). All methods indicate, for the first time, that these CPPs can internalise into N. tabacum cv. SR-1 protoplasts. Transportan has the highest uptake efficacy among the studied peptides, both in mammalian cells and plant protoplast. The internalisation of CPPs by plant protoplasts may open up a new effective method for transfection in plants.  相似文献   

9.
Discovery of cargo carrying cell-penetrating peptides has opened a new gate in the development of peptide-based drugs that can effectively target intracellular enzymes. Success in application and development of cell-penetrating peptides in drug design depends on understanding their translocation mechanisms. In this study, our aim was to examine the bacterial translocation mechanism of the cell-penetrating pVEC peptide (LLIILRRRIRKQAHAHSK) using steered molecular dynamics (SMD) simulations. The significance of specific residues or regions for translocation was studied by performing SMD simulations on the alanine mutants and other variants of pVEC. Residue-based analysis showed that positively charged residues contribute to adsorption to the lipid bilayer and to electrostatic interactions with the lipid bilayer as peptides are translocated. Translocation takes place in three main stages; the insertion of the N-terminus into the bilayer, the inclusion of the whole peptide inside the membrane and the exit of the N-terminus from the bilayer. These three stages mirror the three regions on pVEC; namely, the hydrophobic N-terminus, the cationic midsection, and the hydrophilic C-terminus. The N-terminal truncated pVEC, I3A, L5A, R7A mutants and scramble-pVEC make weaker interactions with the lipids during translocation highlighting the contribution of the N-terminal residues and the sequence of the structural regions to the translocation mechanism. This study provides atomistic detail about the mechanism of pVEC peptide translocation and can guide future peptide-based drug design efforts.  相似文献   

10.
Many membrane-active peptides, such as cationic cell-penetrating peptides (CPPs) and antimicrobial peptides (AMPs), conduct their biological functions by interacting with the cell membrane. The interactions of charged residues with lipids and water facilitate membrane insertion, translocation or disruption of these highly hydrophobic species. In this review, we will summarize high-resolution structural and dynamic findings towards the understanding of the structure–activity relationship of lipid membrane-bound CPPs and AMPs, as examples of the current development of solid-state NMR (SSNMR) techniques for studying membrane peptides. We will present the most recent atomic-resolution structure of the guanidinium-phosphate complex, as constrained from experimentally measured site-specific distances. These SSNMR results will be valuable specifically for understanding the intracellular translocation pathway of CPPs and antimicrobial mechanism of AMPs, and more generally broaden our insight into how cationic macromolecules interact with and cross the lipid membrane.  相似文献   

11.
Cell-penetrating peptides (CPPs) are a group of peptides, which have the ability to cross cell membrane bilayers. CPPs themselves can exert biological activity and can be formed endogenously. Fragmentary studies demonstrate their ability to enhance transport of different cargoes across the blood-brain barrier (BBB). However, comparative, quantitative data on the BBB permeability of different CPPs are currently lacking. Therefore, the in vivo BBB transport characteristics of five chemically diverse CPPs, i.e. pVEC, SynB3, Tat 47–57, transportan 10 (TP10) and TP10-2, were determined. The results of the multiple time regression (MTR) analysis revealed that CPPs show divergent BBB influx properties: Tat 47–57, SynB3, and especially pVEC showed very high unidirectional influx rates of 4.73 μl/(g × min), 5.63 μl/(g × min) and 6.02 μl/(g × min), respectively, while the transportan analogs showed a negligible to low brain influx. Using capillary depletion, it was found that 80% of the influxed peptides effectively reached the brain parenchyma. Except for pVEC, all peptides showed a significant efflux out of the brain. Co-injection of pVEC with radioiodinated bovine serum albumin (BSA) did not enhance the brain influx of radiodionated BSA, indicating that pVEC does not itself significantly alter the BBB properties. A saturable mechanism could not be demonstrated by co-injecting an excess dose of non-radiolabeled CPP. No significant regional differences in brain influx were observed, with the exception for pVEC, for which the regional variations were only marginal. The observed BBB influx transport properties cannot be correlated with their cell-penetrating ability, and therefore, good CPP properties do not imply efficient brain influx.  相似文献   

12.
Cell-penetrating peptides (CPPs) are able to translocate problematic therapeutic cargoes across cellular membranes. The exact mechanisms of translocation are still under investigation. However, evidence for endocytic uptake is increasing. We investigated the interactions of CPPs with phospholipid bilayers as first step of translocation. To this purpose, we employed four independent techniques, comprising (i) liposome buffer equilibrium dialysis, (ii) Trp fluorescence quenching, (iii) fluorescence polarization, and (iv) determination of zeta-potentials. Using unilamellar vesicles (LUVs) of different phospholipid composition, we compared weakly cationic human calcitonin (hCT)-derived peptides with the oligocationic CPPs pVEC and penetratin (pAntp). Apparent partition coefficients of hCT-derived peptides in neutral POPC LUVs were dependent on amino acid composition and secondary structure; partitioning in negatively charged POPC/POPG (80:20) LUVs was increased and mainly governed by electrostatic interactions. For hCT(9-32) and its derivatives, D values raised from about 100-200 in POPC to about 1000 to 1500 when negatively charged lipids were present. Localization profiles of CPPs obtained by Trp fluorescence quenching were dependent on the charge density of LUVs. In POPC/POPG, hCT-derived CPPs were located on the bilayer surface, whereas pVEC and pAntp resided deeper in the membrane. In POPG LUVs, an increase of fluorescence polarization was observed for pVEC and pAntp but not for hCT-derived peptides. Generally, we found strong peptide-phospholipid interactions, especially when negatively charged lipids were present.  相似文献   

13.
Some cationic peptides, referred to as CPPs (cell-penetrating peptides), have the ability to translocate across biological membranes in a non-disruptive way and to overcome the impermeable nature of the cell membrane. They have been successfully used for drug delivery into mammalian cells; however, there is no consensus about the mechanism of cellular uptake. Both endocytic and non-endocytic pathways are supported by experimental evidence. The observation that some AMPs (antimicrobial peptides) can enter host cells without damaging their cytoplasmic membrane, as well as kill pathogenic agents, has also attracted attention. The capacity to translocate across the cell membrane has been reported for some of these AMPs. Like CPPs, AMPs are short and cationic sequences with a high affinity for membranes. Similarities between CPPs and AMPs prompted us to question if these two classes of peptides really belong to unrelated families. In this Review, a critical comparison of the mechanisms that underlie cellular uptake is undertaken. A reflection and a new perspective about CPPs and AMPs are presented.  相似文献   

14.
Internalization of fluorescently labeled CPPs, pVEC, transportan and scrambled pVEC, in a range of plant cells was investigated. Cellular uptake of the peptides was found to be tissue dependent. pVEC and transportan were distinctly internalized in triticale mesophyll protoplasts, onion epidermal cells, leaf bases and root tips of seven-day old triticale seedlings but showed negligible florescence in coleoptile and leaf tips as observed under a fluorescence microscope. Further, pVEC and transportan uptake studies were focused on mesophyll protoplasts as a system of investigation. In fluorimetric studies transportan showed 2.3 times higher cellular internalization than pVEC in protoplasts, whereas scrambled pVEC failed to show any significant fluorescence. Effect of various factors on cellular internalization of pVEC and transportan in protoplasts was also investigated. The cellular uptake of both the peptides was concentration dependent and nonsaturable. The cellular uptake of pVEC and transportan was enhanced at low temperature (4 degrees C). The presence of endocytic/macropinocytosis inhibitors did not reduce the cellular uptake of the peptides, suggesting direct cell penetration, receptor-independent internalization of pVEC and transportan into the plant cells.  相似文献   

15.
Cell-penetrating peptides (CPPs) are able to translocate problematic therapeutic cargoes across cellular membranes. The exact mechanisms of translocation are still under investigation. However, evidence for endocytic uptake is increasing. We investigated the interactions of CPPs with phospholipid bilayers as first step of translocation. To this purpose, we employed four independent techniques, comprising (i) liposome buffer equilibrium dialysis, (ii) Trp fluorescence quenching, (iii) fluorescence polarization, and (iv) determination of ζ-potentials. Using unilamellar vesicles (LUVs) of different phospholipid composition, we compared weakly cationic human calcitonin (hCT)-derived peptides with the oligocationic CPPs pVEC and penetratin (pAntp). Apparent partition coefficients of hCT-derived peptides in neutral POPC LUVs were dependent on amino acid composition and secondary structure; partitioning in negatively charged POPC/POPG (80:20) LUVs was increased and mainly governed by electrostatic interactions. For hCT(9-32) and its derivatives, D values raised from about 100-200 in POPC to about 1000 to 1500 when negatively charged lipids were present. Localization profiles of CPPs obtained by Trp fluorescence quenching were dependent on the charge density of LUVs. In POPC/POPG, hCT-derived CPPs were located on the bilayer surface, whereas pVEC and pAntp resided deeper in the membrane. In POPG LUVs, an increase of fluorescence polarization was observed for pVEC and pAntp but not for hCT-derived peptides. Generally, we found strong peptide-phospholipid interactions, especially when negatively charged lipids were present.  相似文献   

16.
A key step in the development of new hydrophilic pharmaceuticals is to get them through biological barriers. Cell-penetrating peptides, CPPs, have been shown previously to enter cells both in vitro and in vivo by a non-endocytotic mechanism and to be able to carry large cargo molecules with them. Recently, we showed that a small peptide, pVEC, from murine vascular endothelial cadherin, has the characteristics to be classified as a protein derived CPP. Here we have further investigated pVEC together with its all-D analog for cellular uptake, intra- and extracellular stability, and their enzymatic degradation. The two peptides, pVEC and all-D pVEC, translocate into aortic endothelial cells and murine fibroblasts by a non-endocytotic mechanism. In phosphate buffer, pVEC remains intact while the C-terminal lysine is quickly removed in human serum and serum-containing media. Both pVEC and pVEC without the C-terminal Lys were detected by mass spectrometry inside the two cell types tested. The pVEC half-life is 10.5 min in phosphate buffer containing 10 units of trypsin and 44.6 min in phosphate buffer containing 4.2 units of carboxypeptidase A and 18 units of carboxypeptidase B. In contrast topVEC, the all-D analog remains intact in serum and resists enzymatic degradation.  相似文献   

17.
The uptake of different cell-penetrating peptides (CPPs) in two yeast species, Saccharomyces cerevisiae and Candida albicans, was studied using fluorescence HPLC-analyses of cell content. Comparison of the ability of penetratin, pVEC and (KFF)(3)K to traverse the yeast cell envelope shows that the cellular uptake of the peptides varies widely. Moreover, the intracellular degradation of the CPPs studied varies from complete stability to complete degradation. We show that intracellular degradation into membrane impermeable products can significantly contribute to the fluorescence signal. pVEC displayed highest internalizing capacity, and considering its stability in both yeast species, it is an attractive candidate for further studies.  相似文献   

18.
Cell penetrating peptides (CPPs) are small peptides that are able to penetrate the plasma membrane of mammalian cells. Because these peptides can also carry large hydrophilic cargos such as proteins, they could potentially be used to transport biologically active drugs across cell membranes to modulate in vivo biology. One characteristic feature of the CPPs is that they typically have a net positive charge. Therefore, a key issue associated with the transport mechanism is the role of the transmembrane electrochemical potential in driving the peptides across the membrane. In this study, we have reconstituted bacteriorhodopsin (bR) in large unilamellar vesicles (LUVs) with fluorescein-labeled CPP penetratin enclosed within the LUVs under conditions when the fluorescence is quenched. Illumination of the bacteriorhodopsin-containing LUVs resulted in creation of a transmembrane proton electrochemical gradient (positive on the inside). Upon generation of this gradient, an increase in fluorescence was observed, which shows that the proton gradient drives the translocation of penetratin. The mechanism most likely can be generalized to other CPPs.  相似文献   

19.
Antimicrobial peptides (AMPs) are a group of peptides that are active against a diverse spectrum of microorganisms. Due to their mode of action, AMPs are a promising class of molecules that could overcome the problems of increasing resistance of bacteria to conventional antibiotics. Furthermore, AMPs are strongly membrane-active and some are able to translocate into cells without the necessity for permanent membrane permeabilization. This feature has brought them into focus for use as transport vectors in the context of drug delivery. Since the plasma membrane restricts transport of bioactive substances into cells, great research interest lies in the development of innovative ways to overcome this barrier and to increase bioavailability. In this context, peptide-based transport systems, such as cell-penetrating peptides (CPPs), have come into focus, and their efficiency has been demonstrated in many different applications. However, more recently, also some AMPs have been used as efficient vectors for intracellular translocation of various active molecules. This review summarizes recent efforts in this interesting field of drug delivery. Moreover, some examples of the application of CPPs as efficient antimicrobial substances will be discussed.  相似文献   

20.
Aim: To determine whether different antimicrobial peptides (AMPs) and cell‐penetrating peptides (CPPs) are able to inhibit the growth of the commensal yeast Malassezia sympodialis, which can act as a trigger factor in different skin disorders, such as atopic eczema (AE), seborrhoeic eczema (SE) and dandruff. Methods and results: The antifungal activity of 21 different AMPs and CPPs was investigated by microdilution assay and plate counting to determine the number of colony forming units. Five CPPs and one AMP showed fungicidal activity at submicromolar concentrations. Importantly, no membrane damage on human keratinocytes was detected after peptide treatment. Conclusions: Several CPPs, while being nontoxic to mammalian cells, possess growth inhibitory activity on the very stringent yeast M. sympodialis. Significance and impact of study: Our findings that five CPPs and one AMP that are harmless towards mammalian cells act as antifungal agents against M. sympodialis opens up the possibility to use these in the treatment for AE, SE and dandruff. To our knowledge, this is the first time peptides have been identified as antifungal agents against M. sympodialis. Further studies to elucidate the mechanism are warranted.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号