首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
Zhang H T  Tao J P  Wang L  Zuo J  Wang Y P  He Z  Liu J X  Guo Q X 《农业工程》2011,31(4):186-191
In the continental tropics, herbaceous vines and lianas are roughly equal in abundance, and the former are even more abundant in the temperate region. However, only little attention has been paid to the study of biological and ecological characteristics of herbaceous vines. In particular, research about effects of herbaceous vines acting as a biological control on plant communities has not been carried out in depth. Herbaceous vines are widely distributed and abundant also in humid subtropical areas, especially in the early stages of forest community succession, but their ecology is little known. The aim of our study is to understand the effect of local herbaceous vines on community characteristics in pioneer succession stages. The hypothesis was tested that herbaceous vines would have predominantly negative effects on co-occurring species, thereby reducing their diversity. Based on a quadrate method, a detailed survey of shrub and herb communities covered by herbaceous vines was conducted in the Jinyun Mountain Nature Reserve of Chongqing, SW China. The sample plots were selected based on the numbers and coverage of vines, distinguishing among high vine coverage plots, middle vine coverage plots and low vine coverage plots. All species in the plots with different herbaceous vine coverage were identified and measured. The measurements for each species included number, average height and coverage. Because of abundant tree seedlings in the habitat of forest edge plots, we only recorded the number of tree seedlings in those plots to evaluate the overall effects of vines on tree seedling regeneration. After the field investigation, herbaceous vines and other species in the plots were harvested respectively, then oven dried and weighed. The results showed that herbaceous vines had high productivity and produced a lot of branches, which caused above-ground competition and mechanical stress to other species. Herbaceous vines seriously affected species composition and species importance values of self-supporting species. In all three habitats, the number of species and families in low coverage samples was larger than that in high coverage samples, and furthermore the identities of species were different between them. Species richness significantly decreased with increasing herbaceous vine coverage, illustrating that some species disappeared. Herbaceous vines reduced species diversity of communities, and as a result, community complexity was decreased, which might also decrease community stability. Biomass of communities of self-supporting species significantly decreased with increasing herbaceous vine coverage, which suggested that herbaceous vines significantly decreased community productivity. The number of seedlings also significantly decreased with increasing herbaceous vine coverage, and seedlings were mainly distributed in lower coverage samples. Herbaceous vines reduced the light exposure in the understory, which may be the mechanistic explanation for the negative influence of vines on the performance of tree seedlings. It was concluded that herbaceous vines affected seedling quantitative dynamics and distribution, and inhibited the natural succession from shrub and herb communities to tree communities. Thus herbaceous vines not only had significant influences on community characteristics in pioneer succession stages, but also on subsequent succession stages.  相似文献   

2.
沈维  曹敏 《生态学报》2010,30(8):2220-2227
在农业弃耕地上通常会出现由草本植物占优势的演替早期群落。为研究优势草本植物对群落中木本幼苗及群落微环境的影响以及外来入侵植物和本地植物对木本幼苗的影响有何差异,在西双版纳地区选取由外来入侵植物飞机草和本地植物马唐共同占优势的演替早期群落,实施物种清除实验,观测样地中木本幼苗的高增长及死亡补充情况,同时对群落微环境进行观测。结果显示,清除优势种显著提高了木本幼苗的高增长,降低了其死亡率,并且使新增幼苗数量有所提高。清除优势种对0-50cm幼苗高增长和死亡率的影响均大于50-100(或200)cm幼苗。清除处理显著提高了样地的冠层下可见天空比例,但对土壤含水量和土壤养分的影响并不显著。飞机草和马唐均能形成浓密的冠层,通过对光的竞争抑制木本幼苗的生长,且这两者的抑制作用没有显著差异。该地区次生林中常见的先锋树种在研究样地内均有幼苗存在,但其生长却受到优势草本植物的强烈抑制。因此,对演替早期群落中草本植物的控制与管理应同时注意外来入侵物种与本地杂草。  相似文献   

3.
In hardwood subtropical forests of southern Florida, nonnative vines have been hypothesized to be detrimental, as many species form dense “vine blankets” that shroud the forest. To investigate the effects of nonnative vines in post‐hurricane regeneration, we set up four large (two pairs of 30 X 60 m) study areas in each of three study sites. One of each pair was unmanaged and the other was managed by removal of nonnative plants, predominantly vines. Within these areas, we sampled vegetation in 5 X 5 m plots for stems 2 cm DBH (diameter at breast height) or greater and in 2 X 0.5 m plots for stems of all sizes. For five years, at annual censuses, we tagged and measured stems of vines, trees, shrubs and herbs in these plots. For each 5 X 5 m plot, we estimated percent coverage by individual vine species, using native and nonnative vines as classes. We investigated the hypotheses that: (1) plot coverage, occurrence and recruitment of nonnative vines were greater than that of native vines in unmanaged plots; (2) the management program was effective at reducing cover by nonnative vines; and (3) reduction of cover by nonnative vines improved recruitment of seedlings and saplings of native trees, shrubs, and herbs. In unmanaged plots, nonnative vines recruited more seedlings and had a significantly higher plot‐cover index, but not a higher frequency of occurrence. Management significantly reduced cover by nonnative vines and had a significant overall positive effect on recruitment of seedlings and saplings of native trees, shrubs and herbs. Management also affected the seedling community (which included vines, trees, shrubs, and herbs) in some unanticipated ways, favoring early successional species for a longer period of time. The vine species with the greatest potential to “strangle” gaps were those that rapidly formed dense cover, had shade tolerant seedling recruitment, and were animal‐dispersed. This suite of traits was more common in the nonnative vines than in the native vines. Our results suggest that some vines may alter the spatiotemporal pattern of recruitment sites in a forest ecosystem following a natural disturbance by creating many very shady spots very quickly.  相似文献   

4.
Question: Are vines light‐demanding species? Location: Temperate evergreen rain forest of southern Chile (40°39′S, 72°11′W). Methods: In 45 plots of 25 m2 distributed in treefall canopy gaps, secondary forest stands and old‐growth forest (15 plots per light environment), all climbing and non‐supported vines were counted and identified to species level, and canopy openness was quantified using hemispherical photographs. Vine abundance and diversity (species richness and Simpson's index) were compared in the three light environments and similarity between vine communities was estimated using Jaccard's similarity coefficient. We also determined the relationship between light niche breadth and local dominance at the species level. Results: In total there were 2510 vine individuals of 14 species. Canopy openness was significantly different in the three light environments. Species richness, diversity, community composition and density of vines were similar in treefall gaps, secondary and old‐growth forest. Of the seven more common vine species, which accounted for 91% of all vines, three had even distribution, two were more abundant in the shaded understorey, and two had higher density in well‐lit sites. Local dominance of vine species and niche breadth were not significantly associated. Conclusions: Our study in a temperate rain forest questions the widespread notion of vines as pioneer‐like species, which may be a consequence of the abundance of some lianas in disturbed sites of tropical forests. Functional arguments are needed to justify a general hypothesis on light requirements of vines, which constitute a vast group of species.  相似文献   

5.
Questions: Is the occurrence of vine species in neotropical rain forests primarily determined by properties of the forest (environmental factors), by properties of the trees (tree species or tree size) or are vines randomly distributed? Location: Maya Biosphere Reserve, Guatemala. Methods: In five 1‐ha plots that span variation from unlogged forest to forest impacted by recurrent human disturbance we recorded the presence of all climbing vine species on every tree. The presence of all free standing vine species and 11 environmental variables were recorded in 100‐m2 subplots. The relationship of host tree diameter and host tree identity on single tree vine species richness was investigated by GLM modelling. Partial redundancy analyses were used to partition the variation in vine species composition on two sources: environmental factors and tree species identity. Results: Single tree vine richness increased with increasing host tree DBH and differed significantly among host species. For climbing vines, the ratio of variation in subplot presence explained by tree species and by environmental variables was ca. 4:1 (in the most disturbed logged plots slightly lower), for free standing vines this ratio varied from 1:2 in the most disturbed logged plots to 9:1 in reserve plots, while a ratio of ca. 1:1 was found for all plots analysed together. Conclusion: Different tree species have different probabilities of being infested by vines. Vines see both the forest and the trees; the environment is more important in earlier developmental stages, properties of individual trees become more important from the time vines start to climb.  相似文献   

6.
Klimeš  Adam  Klimešová  Lada  Bartušková  Alena  Klimešová  Jitka 《Plant Ecology》2020,221(11):1159-1166

Herbaceous climbers (vines) represent a growth strategy in which the stem lacks most of its supporting function. This has led to the hypothesis that herbaceous climbers are structural parasites that invest less into stems than self-supporting plants. So far, the support for this idea has been ambiguous, as woody and herbaceous plants have been discussed jointly and evidence is often based on young plants in pot experiments. We collected in wild fully grown temperate herbaceous climbers and self-supporting herbs to examine the idea. We made a phylogenetically informed comparison of biomass allocation into stems and leaves of 16 climber species and 74 self-supporting herbs. Furthermore, we compared our results with those published for woody climbers to gain insight into different biomass allocation between herbaceous and woody growth forms. We found that herbaceous climbers and self-supporting herbs do not differ in their proportion of stem biomass to leaf biomass. Herbaceous climbers reach much higher in the canopy thanks to their climbing habit and in average more than seven times longer stems, but contrary to the expectation and unlike their woody counterparts, they do not save on investment into the stem. Herbaceous climbers and self-supporting herbs represent a study system which provides insight into biomass scaling with versus without supporting function where both stems as well as leaves are seasonal.

  相似文献   

7.
The effects of competitive suppression by vines on the non-vine plant community have received little attention in temperate habitats. This study investigated the impact vines have on their herbaceous hosts in a wetland community at two soil fertility levels. Plots in an oligohaline marsh were treated in a 2 × 2 factorial design with vine removal and fertilization over two growing seasons. There was no significant interaction between removal and fertilization treatments on any of the measured variables. Vine removal initially caused an increase in light penetration through the canopy, but by the end of the study, plots with vines removed had less light due to a 25% increase in biomass by the plants released from competition with vines. For plots with vines removed, species richness was higher during a brief period in the spring of the second year, but by the end of the study, richness in removal plots decreased relative to controls. Fertilization caused a 40% increase in biomass overall, although only two species, Sagittaria lancifolia L. and Polygonum punctatum Ell., showed dramatic increases. Despite fertilization causing a 40% decrease in light penetration to the ground, no change in species richness was observed. Overall, these results show that vine cover in this wetland suppresses non-vine species and reduces community biomass. Removal of vines increased biomass of non-vine dominants but resulted in only an ephemeral change in species richness. Fertilization did not increase the effects of vines on the non-vine community. Received: 14 November 1996 / Accepted: 10 June 1997  相似文献   

8.
以山西文峪河上游13种典型的河岸林为研究对象,通过土壤种子库和树种更新研究,分析群落种子库与林下更新随演替进展的变化趋势,以及该区河岸树种的繁殖对策。结果表明:13种群落的土壤种子库密度间于1290±103~3950±154粒/m2,63.5%的种子留存于0~5 cm的层次;种子库包含49种植物,以多年生草本为主,存在耐干扰种和湿地植物的种子;处于相同或相邻演替阶段的群落,种子库相似性较高;随演替进展,种子库密度、丰度、Shannon-Wiener指数及种子库与地上植被的相似性均呈降低趋势;处于演替后期的青杄Picea wilsonii林存在丰富的"青杄幼苗库";先锋种白桦Betula platyphylla的种子存在于演替各阶段的群落中,储量丰富,其更新主要依赖于风媒种子,并存在少量萌蘖;青杄、白杄P.meyeri、华北落叶松Larix principis-rupprechtii、油松Pi-nus tabulaeformis和辽东栎Quercus liaotongensis的种子库损耗严重,没有或仅存少量种子,其中云杉和油松的更新幼苗幼树多,属持久幼苗库更新;华北落叶松幼苗幼树少,且仅出现于林缘或林窗等开阔地,属植被空隙中季节性更新;辽东栎主要依赖丰富的幼苗库进行更新,同时存在一定的萌蘖;青杨Populus cathayana以大量风媒种子更新结合营养扩展。  相似文献   

9.
该研究采用时空互代法、连续带指数法等,对贵州省黔东南州的白云岩喀斯特区60个具有代表性的典型样地的植物种组组成、以及各演替阶段植物群落高度、密度、生物量、生物多样性指数、均匀度指数、生态优势度指数等进行调查分析,以探讨白云岩喀斯特区植物群落的演化特征,为深入研究白云岩喀斯特区植物群落自然恢复规律奠定基础。结果表明:(1)各种组的优势种组成不同,种组替代规律依次为先锋种、次先锋种、过渡种,最终被顶极种替代的过程。(2)群落的高度、密度、生物量等结构特征随植物群落演替发展呈逐渐增大趋势,变化范围分别为0.58~9.54m、585~3 145株·hm-2、8.45~128.56t·hm-2。(3)植物群落的物种丰富度随演替阶段的发展呈下降趋势,从草本群落阶段到顶极群落阶段物种数由48种降低到10种。(4)随着植物群落演替阶段的发展,生物多样性指数呈先升高后降低的趋势,即由草本群落的3.48升高到草灌群落的4.73,后降到顶极群落的3.46;均匀度指数呈降低趋势,最高为草本群落阶段的0.95,最低为常绿阔叶林阶段的0.78;生态优势度指数逐渐升高,顶极群落达到最大,为0.10。  相似文献   

10.
Maesako  Yuri 《Plant Ecology》1999,145(1):183-190
The ground vegetation of an evergreen broad-leaved Persea thunbergii-dominated forest on Kanmurijima Island has been heavily damaged by a ground-burrowing seabird, the streaked shearwater (Calonectris leucomelas). To clarify the effects of seabird trampling and burrowing on the recruitment of tree seedlings, 22 paired quadrats, protected and unprotected against seabirds, were laid out under various degrees of canopy coverage, ranging from heavy- to light-shade. Protection from seabird activities resulted in an increase in species richness of tree seedlings. Seabird activities had a significant effect on tree seedling diversity, while canopy coverage was shown to be important for herbaceous species diversity. Though seedling emergence of Persea thunbergii, the evergreen canopy dominant, was not affected by seabird activities and canopy coverage, that of Mallotus japonicus, a deciduous pioneer tree, was negatively affected by the both factors. Seabird activities and evergreen heavy-shade canopy negatively affected seedling survivorship of both species. Low survivorship in seedlings of the canopy species may doom the present-day warm-temperate evergreen forest of Persea thunbergii on the island. Mechanical impacts of trampling and burrowing and the resulting soil erosion may play an important role in forest regeneration and dynamics.  相似文献   

11.
S. Luke Flory  Keith Clay 《Oecologia》2010,164(4):1029-1038
Multiple factors can affect the process of forest succession including seed dispersal patterns, seedling survival, and environmental heterogeneity. A relatively understudied factor affecting the process of succession is invasions by non-native plants. Invasions can increase competition, alter abiotic conditions, and provide refuge for consumers. Functional traits of trees such as seed size and life history stage may mediate the effects of invasions on succession. We tested the effects of the forest invader Microstegium vimineum on planted and naturally regenerating trees in a multi-year field experiment. We established plots containing nine species of small- and large-seeded tree species planted as seeds or saplings, and experimentally added Microstegium to half of all plots. Over 3 years, Microstegium invasion had an overall negative effect on small-seeded species driven primarily by the effect on sweetgum, the most abundant small-seeded species, but did not affect large-seeded species such as hickory and oak species, which have more stored seed resources. Natural regeneration was over 400% greater in control than invaded plots for box elder, red maple, and spicebush, and box elder seedlings were 58% smaller in invaded plots. In contrast to the effects on tree seedlings, invasion did not affect tree sapling survival or growth. Microstegium may be directly reducing tree regeneration through competition. Invaded plots had greater overall herbaceous biomass in 2006 and 2008 and reduced light availability late in the growing season. Indirect effects may also be important. Invaded plots had 120% more thatch biomass, a physical barrier to seedling establishment, and significantly greater vole damage to tree saplings during 2006 and 2007. Our results show that two tree functional traits, seed size and life history stage, determined the effects of Microstegium on tree regeneration. Suppression of tree regeneration by Microstegium invasions may slow the rate of forest succession and alter tree species composition.  相似文献   

12.
Studying on the community structure, species composition and species diversities of the secondary succession of lower subtropical forest in Heishiding Natural Reserve, Guangdong Province, the following results were obtained. In 2 ~4 years of restored stage the seedlings of pioneer species, heliophytes and mesophytes occur simultaneously. In 10 years of restored stage pioneer species are superior as heliophytes maintain stable and mesophytes are being decreased. In the stage of mixed forest pioneer species are on the decreasing and heliopytes are on the increasing trend. In the stage of evergreen broad-leaved forest dominated by heliophytes pioneer species are being declined, heliophytes are dominant and mesophytes are being increased. In the stage of evergTeen broad-leaved forest dominated by mesophytes heliophytes are being declined and mesophytes are superior. The vertical structure, horizontal structure, the structure of species composition determine stability of communities in secondary succession process. The vertical structure of community is building up in the stage of restoration. The community is composed of the stands under the third class. The forest canopy is not stratified. The individual density is stable. From restored stage to mixed forest the vertical structure of community is diversified. There are the third and forth class stands in community. The tree layer is divided into three sub-layers. The individual density declines rapidly because of self-thinning. In the mixed forest the vertical stmcture is relatively stable. The abundance of the fifth class stands and area of breast height reach the first peak in the succession serial. The individual density increases rapidly. In stage of evergreen broad-leaved forest dominated by heliophytes, the vertical structure changes largely. The abundance of the fifth class and area of breast height decline rapidly, but the individual density changes slowly. In the stage of evergreen broad-leaved forest dominated by mesophytes, the vertical structure of community is stable and the composition of every stand class becomes more stable. The area of breast height is the biggest in the succession serial. When succession develops, the coverage of communities increases gradually but the turnover rate of species declines. The species composition tends to be stabilized. The diversity of species and community evenness increase gradually thus, the ecological dominance declines gradually.  相似文献   

13.
Abstract In late 2001 a category 3 cyclone impacted forest plots that were established in Tonga in 1995, and additionally, one plot was accidentally burned by an escaped land‐clearing fire. Subsequent surveys provide observations of 10 years of forest dynamics in this poorly studied region, and the first reported observations of large interannual variation in juvenile (seedling and sapling) abundance in the western tropical Pacific. The severely disturbed (burned) plot was initially colonized by a non‐native early pioneer, Carica papaya L., but 3.5 years later a native pioneer, Macaranga harveyana (Muell. Arg.) Muell. Arg., was the most abundant tree species. The seedling layer included some long‐lived pioneers and shade‐tolerant species. Two mature forest plots affected only by the cyclone changed very little over a decade. Late‐successional shade‐tolerant species that dominated the overstory were also abundant as seedlings and saplings. This is in contrast with a 30‐ to 40‐year‐old, formerly cultivated, secondary forest plot that still shows no recruitment of late‐successional dominants, in spite of the proximity of remnant forest patches. This study suggests differing pathways of succession following shifting cultivation versus cyclone and fire disturbances in Tonga. Land use legacies appear to have a long‐lasting effect on community composition.  相似文献   

14.
Almost half of lowland tropical forests are at various stages of regeneration following deforestation or fragmentation. Changes in tree communities along successional gradients have predictable bottom‐up effects on consumers. Liana (woody vine) assemblages also change with succession, but their effects on animal succession remain unexplored. Here we used a large‐scale liana removal experiment across a forest successional chronosequence (7–31 years) to determine the importance of lianas to ant community structure. We conducted 1,088 surveys of ants foraging on and living in trees using tree trunk baiting and hand‐collecting techniques at 34 paired forest plots, half of which had all lianas removed. Ant species composition, β‐diversity, and species richness were not affected by liana removal; however, ant species co‐occurrence (the coexistence of two or more species in a single tree) was more frequent in control plots, where lianas were present, versus removal plots. Forest stand age had a larger effect on ant community structure than the presence of lianas. Mean ant species richness in a forest plot increased by ca. 10% with increasing forest age across the 31‐year chronosequence. Ant surveys from forest >20 years old included more canopy specialists and fewer ground‐nesting ant species versus those from forests <20 years old. Consequently, lianas had a minimal effect on arboreal ant communities in this early successional forest, where rapidly changing tree community structure was more important to ant species richness and composition.  相似文献   

15.
对昆明西山国家森林公园处于不同演替阶段的云南油杉林、云南油杉-滇青冈混交林和滇青冈林内木本植物幼苗的种类组成、数量及更新方式等进行了调查分析。结果表明:在所调查的共144个25m2的样方中,共记录到木本植物幼苗32科45属共49种。随着演替的进行,幼苗总密度表现出先增加后降低的趋势,处于演替中期的云南油杉-滇青冈混交林内幼苗最丰富,平均密度达80株.25m-2。在不同演替阶段各植被类型中,实生和萌生两种更新方式同时存在,单一的更新方式可能使群落的更新面临较大的风险。幼苗发生了顶死或梢枯后,从其根颈处生出多个萌枝形成多干基株的更新方式结合了实生和萌生更新各自的优点,是幼苗在与环境长期作用过程中进化出的一种有效对策。  相似文献   

16.
Plant–plant interactions change through succession from facilitative to competitive. At early stages of succession, early‐colonizing plants can increase the survival and reproductive output of other plants by ameliorating disturbance and stressful conditions. At later stages of succession, plant interactions are more competitive as plants put more energy toward growth and reproduction. In northern temperate rainforests, gap dynamics result in tree falls that facilitate tree regeneration (nurse logs) and bryophyte succession. How bryophyte‐tree seedling interactions vary through log succession remains unclear. We examined the relationships of tree seedlings, bryophyte community composition, bryophyte depth, and percent canopy cover in 166 1.0 m2 plots on nurse logs and the forest floor in the Hoh rainforest in Washington, USA, to test the hypothesis that bryophyte‐tree seedling interactions change from facilitative to competitive as the log decays. Tree seedling density was highest on young logs with early‐colonizing bryophyte species (e.g., Rhizomnium glabrescens) and lowest on decayed logs with Hylocomium splendens, a long‐lived moss that reaches depths >20 cm. As a result, bryophyte depth increased with nurse log decay and was negatively associated with tree seedling density. Tree seedling density was 4.6× higher on nurse logs than on the forest floor, which was likely due to competitive exclusion by forest floor plants, such as H. splendens. Nurse logs had 17 species of bryophytes while the forest floor had six, indicating that nurse logs contribute to maintaining bryophyte diversity. Nurse logs enable both tree seedlings and smaller bryophyte species to avoid competition with forest floor plants, including the dominant bryophyte, H. splendens. H. splendens is likely a widespread driver of plant community structure given its dominance in northern temperate forests. Our findings indicate that plant–plant interactions shift with succession on nurse logs from facilitative to competitive and, thus, influence forest community structure and dynamics.  相似文献   

17.
森林生态系统中草层植物的生态功能   总被引:12,自引:0,他引:12  
综述了过去20年国内外有关森林生态系统中草层植物的生态功能研究。森林生态系统中的草层植物是指活的草本类植物及在一定高度(通常40cm)以下的乔灌木幼苗的总和,它和枯落物以及林下土壤共同构成森林生态系统中的林下层亚生态系统。森林生态系统中的草层植物具有明显增加生物多样性,防止水土流失,改良土壤结构,保持和提高土壤肥力,促进林木生长,改善林地小气候,加速生态恢复等方面的功效。其功能是相当强大且多种多样的,我国南亚热带森林生态系统中的草层植物研究应在以下方面进一步加强:1)草层植物与枯落物各自的生态功能与生态效益;2)人工林下的草层植物发生与演替规律;3)林下幼苗的更新演替规律;4)草层植物在复合农林业生态系统中的生态功能及其机理;5)加强草层植物的良种的选育和应用研究等。  相似文献   

18.
以深圳市杨梅坑山地两个植物群落为调查对象,分析其物种组成、物种多样性特征、重要值的变化,探讨不同阶段植物群落的演替动态规律。结果表明,两个植物群落经过7年演替后,植物群落的丰富度有所增加,且种类组成出现明显差异,两个植物群落在不同时期所呈现的自然景观不一样。群落科、属、种的数量差异明显。原鸭脚木-九节-铁线蕨群落2013年共有26科36属39种,2018年共有19科29属30种,2019年共有32科51属61种;原绒毛润楠-瓜馥木-团羽铁线蕨群落2013年共有25科30属33种,2018年共有24科33属33种,2019年共有42科67属83种。两个植物群落乔木层、灌木层、草本层三个层次的物种多样性指数和Pielou均匀度指数几乎都呈先下降再上升的趋势。演替系列中,乔木层、灌木层和草本层的物种组成均表现出耐荫种替代非耐荫种的趋势,且植物群落的层次由简单趋向复杂。  相似文献   

19.
Fridley JD  Wright JP 《Oecologia》2012,168(4):1069-1077
Climate change is widely expected to induce large shifts in the geographic distribution of plant communities, but early successional ecosystems may be less sensitive to broad-scale climatic trends because they are driven by interactions between species that are only indirectly related to temperature and rainfall. Building on a biogeographic analysis of secondary succession rates across the Eastern Deciduous Forest (EDF) of North America, we describe an experimental study designed to quantify the relative extent to which climate, soil properties, and geographic species pools drive variation in woody colonization rates of old fields across the EDF. Using a network of five sites of varying soil fertility spanning a latitudinal gradient from central New York to northern Florida, we added seeds of nine woody pioneer species to recently tilled old fields and monitored first-year growth and survivorship. Results suggest seedlings of southern woody pioneer species are better able to quickly establish in fields after abandonment, regardless of climate regime. Sites of lower soil fertility also exhibited faster rates of seedling growth, likely due to the slower development of the successional herbaceous community. We suggest that climate plays a relatively minor role in community dynamics at the onset of secondary succession, and that site edaphic conditions are a stronger determinant of the rate at which ecosystems develop to a woody-dominated state. More experimental research is necessary to determine the nature of the herbaceous–woody competitive interface and its sensitivity to environmental conditions.  相似文献   

20.
森林次生演替优势种苗木的光可塑性比较研究   总被引:5,自引:0,他引:5  
本文从研究苗木的叶绿素含量和RuBP羧化酶活性随着光环境的变化而发生改变的规律出发,来探讨森林次生演替优势种苗木的光可塑性大小和对弱光环境的适应能力。各种苗木的叶绿素含量都随着光强度变弱而增加,但如果较长时间生长在弱光环境中,由于叶绿素的合成小于分解,其含量也会逐渐变小。不同的演替阶段优势种苗木的叶绿素含量的增加或减少在量上有一定的区别。以叶绿素含量随着光环境变化的测定值为指标,用模糊数学分析的结果表明,苗木的耐荫性大小顺序是演替后期种(黄果厚壳桂Cryptocaryaconcinna)>演替过渡种(藜蒴Castanopsisfisa)>演替过渡种(荷木Schimasuperba)>演替先锋树种(马尾松Pinusmasoniana);且藜蒴和荷木很接近,稍靠近黄果厚壳桂。马尾松和荷木的RuBP羧化酶活性随着生长环境的光强度的增加,其活性有所增加;但黄果厚壳桂的相应值是在每日直照光1h的光环境中最高。除马尾松外,演替过渡种和后期种的苗木都是在每日直照光1h的光环境中生长最好,这和每日短期照光提高RuBP羧化酶活性的(与没有直照光的环境相比较)同时又不分解叶绿素、不降低其含量有密切的关系。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号