首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary Partially sterile interspecific hybrids were obtained between C. annuum var. cerasiformis and C. chinense var. mishme (H1), and C. annuum var. cerasiformis and C. baccatum var. pendulum (H2). Morphologically the F1 hybrids were intermediate between the corresponding parents. Meiosis was irregular in the two F1 hybrids. Cytological analysis of the two F1 hybrids revealed that the genome of C. annuum differs from C. chinense by two translocations and some minor structural alterations and from C. baccatum by two translocations, a single inversion and some minor structural alterations. Isolation barriers such as hybrid inviability, weakness and hybrid breakdown in the H1 hybrid and, inaddition, desynapsis in the H2, were operative in these taxa. The differences between the present findings and those reported earlier on the two F1hybrids were attributed to differences in the genetic architecture of the taxa employed in hybridization.  相似文献   

2.
In infection, complement C1q recognizes pathogen-congregated antibodies and elicits complement activation. Among endogenous ligands, C1q binds to DNA and apoptotic cells, but whether C1q binds to nuclear DNA in apoptotic cells remains to be investigated. With UV irradiation-induced apoptosis, C1q initially bound to peripheral cellular regions in early apoptotic cells. By 6 h, binding concentrated in the nuclei to the nucleolus but not the chromatins. When nucleoli were isolated from non-apoptotic cells, C1q also bound to these structures. In vivo, C1q exists as the C1 complex (C1qC1r2C1s2), and C1q binding to ligands activates the C1r/C1s proteases. Incubation of nucleoli with C1 caused degradation of the nucleolar proteins nucleolin and nucleophosmin 1. This was inhibited by the C1 inhibitor. The nucleoli are abundant with autoantigens. C1q binding and C1r/C1s degradation of nucleolar antigens during cell apoptosis potentially reduces autoimmunity. These findings help us to understand why genetic C1q and C1r/C1s deficiencies cause systemic lupus erythematosus.  相似文献   

3.
We evaluated the differential nature of interactions between waterborne Ca and Cd transport in the gills of yellow perch (Perca flavescens) and rainbow trout (Oncorhynchus mykiss), two species with a more than 400-fold difference in acute waterborne Cd tolerance. The Jmax (maximum rate of uptake) and Km (inverse of affinity) for Ca uptake, in the absence of Cd, were significantly lower in yellow perch (120.48 nM g–1 wet wt h–1 and 92.17 M, respectively) relative to rainbow trout (188.68 nM g–1 wet wt h–1 and 243.90 M, respectively). Similarly, the Jmax for Cd uptake, at the lowest waterborne Ca level (100 M) tested, was significantly lower in yellow perch (0.27 nM g–1 wet wt h–1) relative to rainbow trout (0.40 nM g–1 wet wt h–1), but no significant difference was observed in the Km values between the two species (yellow perch: 32.47 nM; rainbow trout: 31.27 nM). Waterborne Cd (0–890 nM) as well as waterborne Ca (100–1,000 M) competitively inhibited branchial uptake of each other in both species. However, analyses of inhibitor constants for branchial Ca uptake by waterborne Cd ( ) revealed that the inhibition was about 1.8 times more potent in rainbow trout compared to yellow perch. In contrast, analyses of inhibitor constants for branchial Cd uptake by waterborne Ca ( ) indicated that the inhibition was more than three fold more potent in yellow perch than in rainbow trout. Higher branchial Ca uptake and more potent inhibition by Cd as well as higher branchial Cd uptake and less potent inhibition by Ca were also reflected in whole-body measurements of Ca and Cd influx in trout relative to perch. Overall, whole-body effects were in accord with the branchial kinetic analyses. These results further strengthen the conclusion that branchial influxes of Ca and Cd occur through common pathways. Moreover, interspecific differences in acute waterborne Cd sensitivity can be explained, at least in part, by the differential nature of interactions between waterborne Ca and Cd transport in fish gills.Abbreviations FAAS flame atomic absorption spectrophotometer - GFAAS graphite furnace atomic absorption spectrophotometer - J max maximum rate of uptake - K i inhibitor constant - K m substrate concentration at which the rate of uptake is half of the Jmax - 96 h LC50 concentration at which 50% mortality occurs after 96 h Communicated by L.C.-H. WangThis revised version was published online in February 2004 with corrections to the abbreviation .  相似文献   

4.
Summary The interaction of allosteric effectors (CO2, ATP, H+) with respect to the oxygen affinity of carp hemoglobin was analyzed by determining oxygen binding curves spectrophotometrically in dilute solutions of stripped hemoglobin at 20°C. The pH range studied was 6.8–8.2.P CO2 was 0, 10 and 70 mmHg (0, 1.33 and 9.3 kPa). ATP/Hb4 was 0, 8 and 24. In the presence of either CO2 or ATP, the effects of the cofactors onP 50 were as expected over the whole pH range. In contrast to other published data, each cofactor also had a significant effect onP 50 in the presence of the other cofactor. Evidence was obtained that oxylabile carbamate is formed by carp hemoglobin and that the formation of carbamate persists at a lower level in the presence of ATP. The results support the view that the binding of ATP to carp hemoglobin requires only one terminal amino group, leaving the other N-terminal of the -chain free to react with CO2.  相似文献   

5.
The nucleotide sequence of the previously cloned (Zabolotskaya, M. V., Nosovskaya, E. A., Kaplun, M. A., and Akimkina, T. V. (2001). Mol. Gen. Mikrobiol. Virusol. No 1, 32–34) DNA fragment from Thermoactinomyces sp. 27a (GenBank Accession No. AY280367) containing the metalloproteinase gene was determined. A continuous open reading frame encoding a polypeptide of 673 aa was revealed. Analysis of this sequence demonstrated that the metalloproteinase from Thermoactinomyces sp. 27a is synthesized as a preproprotein and includes a leader peptide (26 aa), N-terminal propeptide (215 aa), mature region (317 aa), and additional C-terminal domain (115 aa). The recombinant enzyme from Thermoactinomyces sp. 27a was expressed in Bacillus subtilis AJ73 cells and purified by anion exchange chromatography to an electrophoretically homogeneous state. The determined N-terminal amino acid sequence of the mature protein was identical to that deduced from the gene. The obtained data suggest that the mature protein should include 432 aa and have a calculated molecular weight of 46,262 Da. However, the molecular weight of the mature protein determined by mass spectrometry was 34,190 ± 70 Da indicating a C-terminal processing. Theproteinase was not inhibited by phenylmethyl sulfonyl fluoride but was inhibited by o-phenanthroline and ethylenediaminetetraacetic acid. The enzyme had maximum activity by azocasein hydrolysis at 55°C and pH 6.5–7.5; it was stable at pH 7.5–8.5 and remained stable at 50°C for several hours. The kcat/Km for 3-(2-furyl)acryloyl-glycyl-L-leucine amide hydrolysis was (2.8 ± 0.1) ×103 M–1×s–1.  相似文献   

6.
Summary Heavy meromyosin subfragment-1 (S1) was prepared by -chymotrypsin from myosin of carp acclimated to either 10°C or 30°C for a minimum of 5 weeks. The objective of these studies was to document thermally-induced changes in the myosin molecule and to extend previous observations. Ca2+- and K+ (EDTA)-ATPase activities of cold-acclimated carp S1 were 1.1 and 0.8 mol Pi·min-1·mg-1, respectively, and these values did not differ significantly from those of warm-acclimated carp. The inactivation rate constant (KD) of S1 from cold-acclimated carp was 32.1x10-4· s-1, compared to 13.2x10-4·s-1 for warm-acclimated carp. The maximum initial velocity of acto-S1 Mg2+-ATPase activity at pH 7.0 in 0.05 M KCl was 9.3 s-1 with cold-acclimated carp, about 3.7 times higher than that for warm-acclimated carp. However, no significant difference was observed in the apparent affinity of S1 to actin. Peptides maps of the heavy chain of S1 were different and suggested distinct isoforms for the myosins from warm- and cold-acclimated muscle.Abbreviations ATPase adenosine 5-triphosphatase - DTNB 5,5-dithiobis (2-nitrobenzoic acid) - DTT dithiothreitol - EDTA ethylenediaminetetraacetic acid - EGTA ethyleneglycol bis (-aminoethylether)-N,N,N,N-tetraacetic acid - K D inactivation rate constant - K m apparent dissociation constant - P i inorganic -phosphate - PMSF phenylmethane-sulfonyl fluoride - S 1 heavy meromyosin subfragment-1 - SDS sodium dodecyl sulfate - SDS-PAGE SDS-polyacrylamide gel electrophoresis - TPCK N-tosyl-l-phenylalanyl chloromethyl ketone - V max maximum initial velocity  相似文献   

7.
Guanosine, a guanine‐based purine, is an extracellular signaling molecule that is released from astrocytes and shows neuroprotective effects in several in vivo and in vitro studies. Our group recently showed that guanosine presents antioxidant properties in C6 astroglial cells. The heme oxygenase 1 signaling pathway is associated with protection against oxidative stress. Azide, an inhibitor of the respiratory chain, is frequently used in experimental models to induce oxidative and nitrosative stress. Thus, the goal of this study was to investigate the effect of guanosine on azide‐induced oxidative damage in C6 astroglial cells. Azide treatment of these cells resulted in several detrimental effects, including induction of cytotoxicity and mitochondrial dysfunction, increased levels of reactive oxygen/nitrogen species, inducible nitric oxide synthase expression and NADPH oxidase, decreased glutamate uptake and EAAC1 glutamate transporter expression, decreased glutathione (GSH) levels, and decreased activities of glutamine synthetase (GS), superoxide dismutase and catalase (CAT). The treatment also increased nuclear factor‐κB activation and the release of proinflammatory cytokines tumor necrosis factor α and IL‐1β. Guanosine strongly prevented these effects, protecting glial cells against azide‐induced cytotoxicity and modulating glial, oxidative and inflammatory responses through the activation of the heme oxygenase 1 pathway. These observations reinforce and support the role of guanosine as an antioxidant molecule against oxidative damage.

  相似文献   


8.
The C1 complex of human complement comprises two loosely interacting subunits, C1q and the Ca2+-dependent C1s-C1r-C1r-C1s tetramer. With a view to gain information on the nature of the ionic interactions involved in C1 assembly, we have studied the effects of the chemical modifications of charged residues of C1q or the tetramer on their ability to reconstitute the C1 complex. Treatment of C1q with pyridoxal-5-phosphate, acetic anhydride, and citraconic anhydride, as well as with cyclohexanedione and diethylpyrocarbonate, inhibited its ability to associate with C1s-C1r-C1r-C1s. Treatment of the collagen-like fragments of C1q with the same reagents yielded the same effects. Treatment of C1s-C1r-C1r-C1s with 1-ethyl-3-[3-(dimethylamino) propyl] carbodiimide also prevented C1 assembly, through modification of acidic amino acids which were shown to be located in C1r. Further studies on the location of the interaction sites within C1q, using ligand-blotting and competition experiments with synthetic peptides, were unsuccessful, suggesting that these sites are contributed to by two or three of the C1q chains. It is concluded that C1 assembly involves interactions between acidic amino acids of C1r and lysine (hydroxylysine) and arginine residues located within the collagen-like region of C1q. Sequence comparison with mannan binding protein, another collagen-like molecule which binds the C1s-C1r-C1r-C1s tetramer, suggests Arg A38, and HyL B32, B65, and C29 of C1q as possible interaction sites.  相似文献   

9.
InClostridium magnum strain Wo Bd P1 the formation of the enzyme components of the acetoin dehydrogenase enzyme system E1 (acetoin:2,6-dichlorophenolindophenol oxidoreductase Ao:DCPIP OR), E2 (dihydrolipoamide acetyltransferase DHLTA) and E3 (dihydrolipoamide dehydrogenase DHLDH) were induced during growth on acetoin. Ao:DCPIP OR was purified from acetoin-grown cells in two steps by chromatography on DEAE-Sephacel and on Mono Q HR. Native Ao:DCPIP OR exhibited a Mr of 138,000; it consisted of two different subunits of Mr 38,500 and Mr 34,000, and it occurred most probably in a tetrameric 22 structure. The N-terminal amino acid sequences of the - and -subunits revealed homologies to the N-termini of the corresponding subunits of Ao:DCPIP OR fromPelobacter carbinolicus and fromAlcaligenes eutrophus; furthermore, the N-terminus of the -subunit exhibited homologies to the N-termini of -subunits from different 2-oxo acid dehydrogenases.Abbreviations Ao:DCPIP OR acetoin:2,6-dichlorophenolindophenol oxidoreductase - DHLDH dihydrolipoamide dehydrogenase - DHLTA dihydrolipoamide acetyltransferase - HETPP hydroxyethyl thiamine pyrophosphate  相似文献   

10.
Summary C1r and C1s are distinct, but structurally and functionally similar, serine protease zymogens responsible for the enzymatic activity of the first component of complement (C1). Recent comparisons indicate a significant degree of sequence similarity between C1r and C1s and support the hypothesis that they are related by gene duplication. Complementary DNA probes for human C1r and C1s do not cross-hybridize even at mild stringency conditions and are therefore genespecific. Using a panel of 25 human-rodent cell hybrids, we have independently assigned the C1r and the C1s genes to chromosome 12. In situ hybridization analyses were consistent with these assignments, showing in addition that both C1r and C1s are located on the short arm of the chromosome in the region p13. These data suggest that the homologous C1r and C1s genes have remained closely linked after duplication of a common ancestor. The C1r and C1s loci also provide useful polymorphic DNA markers for the short arm of chromosome 12.  相似文献   

11.
Little is known about the major histocompatibility complex (MHC) class 1 in squirrel monkeys (Saimiri sciureus). We cloned, sequenced and characterized two alleles and the cDNA of the coding region of MHC class 1 in these New World monkeys. Phylogenetic analyses showed that these sequences are related to HLA class 1 genes (HLA-A and HLA-G). The structure and organization of one of the two identified clones was similar to that of a class 1 MHC gene (HLA-A2). All the exon/intron splice acceptor/donor sites are conserved and their locations correspond to the HLA-A2 gene. The sequences of the newly described cDNAs reveal that they code for the characteristic class 1 MHC proteins, with all the features thought necessary for cell surface expression. Typical sequences for the leader peptide, 1, 2, 3, transmembrane and cytoplasmic domains were found.The nucleotide sequence data reported in this paper have been submitted to the GenBank database and have been assigned the accession numbers AJ438576 (Sasc-G*31), AJ438577 (Sasc-G*25), AY282760 (Sasc-G*03), AY282761 (Sasc-G*04) and AY282762 (Sasc-G*05). Sequences were named as recommended by Klein and co-workers (1990)  相似文献   

12.
The C1 complex of complement is assembled from a recognition protein C1q and C1s-C1r-C1r-C1s, a Ca2+-dependent tetramer of two modular proteases C1r and C1s. Resolution of the x-ray structure of the N-terminal CUB1-epidermal growth factor (EGF) C1s segment has led to a model of the C1q/C1s-C1r-C1r-C1s interaction where the C1q collagen stem binds at the C1r/C1s interface through ionic bonds involving acidic residues contributed by the C1r EGF module (Gregory, L. A., Thielens, N. M., Arlaud, G. J., Fontecilla-Camps, J. C., and Gaboriaud, C. (2003) J. Biol. Chem. 278, 32157–32164). To identify the C1q-binding sites of C1s-C1r-C1r-C1s, a series of C1r and C1s mutants was expressed, and the C1q binding ability of the resulting tetramer variants was assessed by surface plasmon resonance. Mutations targeting the Glu137-Glu-Asp139 stretch in the C1r EGF module had no effect on C1 assembly, ruling out our previous interaction model. Additional mutations targeting residues expected to participate in the Ca2+-binding sites of the C1r and C1s CUB modules provided evidence for high affinity C1q-binding sites contributed by the C1r CUB1 and CUB2 modules and lower affinity sites contributed by C1s CUB1. All of the sites implicate acidic residues also contributing Ca2+ ligands. C1s-C1r-C1r-C1s thus contributes six C1q-binding sites, one per C1q stem. Based on the location of these sites and available structural information, we propose a refined model of C1 assembly where the CUB1-EGF-CUB2 interaction domains of C1r and C1s are entirely clustered inside C1q and interact through six binding sites with reactive lysines of the C1q stems. This mechanism is similar to that demonstrated for mannan-binding lectin (MBL)-MBL-associated serine protease and ficolin-MBL-associated serine protease complexes.The classical pathway of complement, a major component of innate immune defense against pathogens and altered self, is triggered by C1, a 790-kDa Ca2+-dependent complex assembled from a recognition protein C1q and C1s-C1r-C1r-C1s, a tetramer of two modular proteases, C1r and C1s, that respectively mediate activation and proteolytic activity of the complex (13). C1q has the overall shape of a bunch of tulips and comprises six heterotrimeric collagen-like triple helices that assemble through their N-terminal moieties to form a “stalk” and then diverge to form individual “stems,” each prolonged by a C-terminal globular recognition domain (4). C1r and C1s are homologous modular proteases each comprising, starting from the N-terminal end, a C1r/C1s, sea urchin EGF2 (uEGF), bone morphogenetic protein (CUB) module (5), an EGF-like module (6), a second CUB module, two complement control protein modules (7), and a serine protease domain. This modular structure is shared by the mannan-binding lectin-associated serine proteases (MASPs), a group of enzymes that associate with mannan-binding lectin (MBL) and the ficolins and thereby trigger activation of the lectin pathway of complement (8).Assembly of the C1s-C1r-C1r-C1s tetramer involves Ca2+-dependent heterodimeric C1r-C1s interactions between the CUB1-EGF segments of each protease (912). Similarly, MASP-1, MASP-2, MASP-3, and mannan-binding lectin-associated protein 19 (MAp19), an alternative splicing product of the MASP-2 gene comprising the N-terminal CUB1-EGF segment of MASP-2, all associate as homodimers through their N-terminal CUB1-EGF moieties (1315). The structures of human C1s CUB1-EGF, human MAp19, human MASP-1/3 CUB1-EGF-CUB2, and rat MASP-2 CUB1-EGF-CUB2 have been solved by x-ray crystallography (1619), revealing that these domains all associate as head-to-tail homodimers through a highly conserved interface involving interactions between the CUB1 module of one monomer and the EGF module of its counterpart. In addition, all CUB modules contained in these structures were found to contain a hitherto unrecognized Ca2+-binding site involving three conserved acidic residues (Glu45, Asp53, and Asp98 in C1s), defining a novel CUB module subset diverging from the type originally described in the spermadhesins (20).Mutagenesis studies have recently established that assembly of the MBL- and ficolin-MASP complexes involves a major electrostatic interaction between two acidic Ca2+ ligands from the MASP CUB modules and a conserved lysine located in the collagen fibers of MBL and ficolins (16, 18, 21, 22). In the case of C1, a hypothetical model of the C1q/C1r/C1s interface, involving interaction between acidic residues mainly contributed by the C1r EGF module and unmodified lysine residues also located in the collagen-like stems of C1q, was derived from the x-ray structure of the C1s CUB1-EGF interaction domain (16, 23). The aim of this work was to use site-directed mutagenesis to delineate the sites of C1r and C1s involved in the interaction between C1s-C1r-C1r-C1s and C1q. Our data rule out our previous interaction model and provide evidence that C1 assembly involves the same basic Ca2+-dependent mechanism as demonstrated in the case of MBL-MASP and ficolin-MASP complexes.  相似文献   

13.
Microsomal prostaglandin E2 synthase (mPGES-1) has been identified recently as a novel target for treating pain and inflammation. The aim of this study is to understand the binding affinities of reported inhibitors for mPGES-1 and further to design potential new mPGES-1 inhibitors. 3D-QSAR-CoMFA (comparative molecular field analysis) and CoMSIA (comparative molecular similarity indices analysis) - techniques were employed on a series of indole derivatives that act as selective mPGES-1 inhibitors. The lowest energy conformer of the most active compound obtained from systematic conformational search was used as a template for the alignment of 32 compounds. The models obtained were used to predict the activities of the test set of eight compounds, and the predicted values were in good agreement with the experimental results. The 3D-QSAR models derived from the training set of 24 compounds were all statistically significant (CoMFA; q 2 = 0.89, r 2 = 0.95, , and CoMSIA; q 2 = 0.84, r 2 = 0.93, , ). Contour plots generated for the CoMFA and CoMSIA models reveal useful clues for improving the activity of mPGES-1 inhibitors. In particular, substitutions of an electronegative fluorine atom or a bulky hydrophilic phenoxy group at the meta or para positions of the biphenyl rings might improve inhibitory activity. A plausible binding mode between the ligands and mPGES-1 is also proposed.  相似文献   

14.
A water-soluble peptide possessing an immune complex selective affinity was synthesized and its primary structure established as: Leu-Glu-Gln-Gly-Glu-Asn-Val-Phe-Leu-Gln-Ala-Thr-Ser-Asp-Asp-Cys. This peptide, designated as C1q-like peptide (CLP), represents a possible immune complex binding epitope of complement C1q. CLP has a hydrophilicity value of 0.21. At 0.5 M, it inhibited by 50% natural human C1q from binding to horseradish peroxidase-rabbit anti-peroxidase immune complex. CLP failed to inhibit Staphylococcus aureus protein A from binding monomeric IgG. When coated to a microplate, CLP showed selective binding to the immune complex, and could be used for application in immunochemical detection of immune complex. © Rapid Science Ltd. 1998  相似文献   

15.
Complement control protein modules (CCP) typically mediate protein:protein interaction during immune response in vertebrates. Using NMR chemical shift perturbation mapping, we present previously lacking experimental evidence for intermolecular interactions between the CCP1 and CCP2 modules of the human C1r serine protease (SP). The identified interface is clearly distinct from that observed in the covalently linked CCP1-CCP2 pair. Structural models of the CCP1-CCP2-SP segments of two C1r molecules built on the basis of shift perturbation data are fully consistent with an extended interaction interface and suggests the possibility of a structural rearrangement as a switch between functional states of human C1r.

Structured summary

MINT-8045767: CCP1 (uniprotkb:P00736) and CCP2 (uniprotkb:P00736) bind (MI:0407) by nuclear magnetic resonance (MI:0077)  相似文献   

16.
Gangliosides of the GM1b-pathway (GM1b and GalNAc-GM1b) have been found to be highly expressed by the mouse T lymphoma YAC-1 grown in serum-supplemented medium, whereas GM2 and GM1 (GM1a-pathway) occurred only in low amounts [Müthing, J., Peter-Katalini, J., Hanisch, F.-G., Neumann, U. (1991)Glycoconjugate J 8:414–23]. Considerable differences in the ganglioside composition of YAC-1 cells grown in serum-supplemented and in well defined serum-free medium were observed. After transfer of the cells from serum-supplemented medium (RPMI 1640 with 10% fetal calf serum) to serum-free medium (RPMI 1640 with well defined supplements), GM1b and GalNAc-GM1b decreased and only low amounts of these gangliosides could be detected in serum-free growing cells. The expression of GM1a was also diminished but not as strongly as that of GM1b and GalNAc-GM1b. These growth medium mediated ganglioside alterations were reversible, and the original ganglioside expression was achieved by readaptation of serum-free growing cells to the initial serum-supplemented medium. On the other hand, a new ganglioside, supposed to represent GalNAc-GD1a and not expressed by serum-supplemented growing cells, was induced during serum-free cultivation, and increased strongly after readaptation. These observations reveal that the ganglioside composition ofin vitro cultivated cells can be modified by the extracellular environment due to different supplementation of the basal growth medium. Abbreviations: BSA, bovine serum albumin GSL(s), glycosphingolipid(s); HPTLC, high-performance thin-layer chromatography; LDL, low density lipoprotein; NeuAc,N-acetylneuraminic acid; NeuGc,N-glycoloylneuraminic acid. The designation of the following glycosphingolipids follows IUPAC-IUB recommendations. GgOse3Cer or gangliotriaosylceramide, GalNAc1-4Gal1-4GlcCer; GgOse4Cer or gangliotetraosylceramide, Gal1-3GalNAc1-4Gla1-4GlcCer; GgOse5Cer or gangliopentaosylceramide, GalNAc1-4Gal1-3GalNAc1-4Gal1-4GlcCer; GgOse6Cer or gangliohexaosylceramide, Gal1-3GalNAc1-4Gal1-3GalNAc1-4Gal1-4GlcCer or GgOse6Cer; II3NeuAc-GgOse3Cer or GM2; II3NeuAc-GgOse4Cer or GM1 or GM1a; IV3NeuAc-GgOse4Cer or GM1b; IV3NeuAc-GgOse5Cer or GalNAc-GM1b; IV3NeuAc-GgOse6Cer or Gal-GalNAc-GM1b; IV3NeuAc, II3NeuAc-GgOse4Cer or GD1a; II3(NeuAc)2-GgOse4Cer or GD1b; IV3NeuAc, III6NeuAc-GgOse4Cer or GD1a; IV3NeuAc, II3NeuAc-GgOse5Cer or GalNAc-GD1a. Enzymes: Vibrio cholerae andArthrobacter ureafaciens neuraminidase (EC 3.2.1.18).  相似文献   

17.
In the present studies, the pharmacology and regulation of the functional muscarinic receptors on HSDM1C1 cells were probed using phosphoinositide (PI) turnover assays. In addition, the receptor binding of the putative M3-selective radioligand, [3H]4-DAMP, to cell homogenates was characterized. Carbachol (EC50=9 M), (+)muscarine (EC50=4.5 M) and cis-dioxolane (EC5=0.72 M) were full agonists which stimulated PI turnover by 13.3±1.0 fold above basal values. The potencies of numerous agonists in this assay system were relatively similar to their affinities in receptor binding assays. Exposure of HSDM1C1 cells to 10 nM–10 M muscarine during the last 24h of [3H]myo-inositol-labeling resulted in a concentration-dependent reduction in the cisdioxolane affinity and maximal PI response induced by subsequent treatment with cis-dioxolane. pertussis toxin (5–2000 ng/ml) caused a partial reduction in the cis-dioxolane-induced PI turnover. Likewise, exposure of the HSDM1C1 cells to an active phorbol ester (TPA) resulted in a partial inhibition of the cis-dioxolane-induced (100 M) PI turnover. The half-maximal effect of TPA was produced at 1.8±0.3 nM. [3H]4-DAMP binding to cell homogenates was of high affinity (Kd=0.19±0.04 nM) and moderate capacity (Bmax=201±22 fmol/mg protein). The pharmacological specificity (4-DAMP>p-FHHSiD>dicyclomine>pirenzepine>methoctramine>AFDX-116 >gallamine) resembled that for [3H]NMS binding and correlated well with that observed for inhibition of PI turnover. These studies further support the identification of M3 receptors on HSDM1C1 cells. These receptors have been shown to be influenced by pertussis toxin, an active phorbol ester and to exhibit desensitization.  相似文献   

18.
The effects of cAMP-dependent protein kinase A and protein kinase C on cell-cell communication have been examined in primary ovarian granulosa cells microinjected with purified components of these two regulatory cascades. These cells possess connexin43 ( 1)-type gap junctions, and are well-coupled electrotonically and as judged by the cell-to-cell transfer of fluorescent dye. Within 2–3 min after injection of the protein kinase A inhibitor (PKI) communication was sharply reduced or ceased, but resumed in about 3 min with the injection of the protein kinase A catalytic subunit. A similar resumption also occurred in PKI-injected cells after exposure to follicle stimulating hormone. Microinjection of the protein kinase C inhibitor protein caused a transient cessation of communication that spontaneously returned within 15–20 min. Treatment of cells with activators of protein kinase C, TPA or OAG for 60 min caused a significant reduction in communication that could be restored within 2–5 min by the subsequent injection of either the protein kinase C inhibitor or the protein kinase A catalytic subunit. With a longer exposure to either protein kinase C activator communication could not be restored and this appeared to be related to the absence of aggregates of connexin43 in membrane as detected immunologically. In cells injected with alkaline phosphatase communication stopped but returned either spontaneously within 20 min or within 2–3 min of injecting the cell with either the protein kinase A catalytic subunit or with protein kinase C. When untreated cells were injected with protein kinase C communication diminished or ceased within 5 min. Collectively these results demonstrate that cell-cell communication is regulated by both protein kinase A and C, but in a complex interrelated manner, quite likely by multiple phosphorylation of proteins within or regulating connexin-43 containing gap junctions.Abbreviations C catalytic subunit of protein kinase A - CKI protein kinase C inhibitor protein - Cx connexin protein - dbcAMP N6,2-O-dibutyryladenosine 3:5-cyclic monophosphate - OAG 1-oleoyl-2-acetyl-sn-glycerol - protein kinase A cAMP-dependent protein kinase - protein kinase C Ca2+-sensitive phospholipid-dependent protein kinase - PKI protein kinase A inhibitor protein - R regulatory subunit of protein kinase A - TRA 12-O-tetradecanoylphorbol-13-acetate - 8Br-cAMP 8-bromoadenosine 3:5 cyclic monophosphate  相似文献   

19.
Through the screening of microorganisms capable of utilizing α-methylserine, three representative strains belonging to the bacterial genera Paracoccus, Aminobacter, and Ensifer were selected as potent producers of α-methylserine hydroxymethyltransferase, an enzyme that catalyzes the interconversion between α-methyl-l-serine and d-alanine via tetrahydrofolate. Among these strains, Paracoccus sp. AJ110402 was selected as the strain exhibiting the highest α-methylserine hydroxymethyltransferase activity. The enzyme was purified to homogeneity from a cell-free extract of this strain. The native enzyme is a homodimer with apparent molecular mass of 85 kDa and contains 1 mol of pyridoxal-5′-phosphate per mol of the subunit. The Km for α-methyl-l-serine and tetrahydrofolate was 0.54 mM and 73 μM, respectively. The gene from Paracoccus sp. AJ110402 encoding α-methylserine hydroxymethyltransferase was cloned and expressed in Escherichia coli. Sequence analysis revealed an open reading frame of 1278 bp, encoding a polypeptide with a calculated molecular mass of 46.0 kDa. Using E. coli cells as whole-cell catalysts, 9.7 mmol of α-methyl-l-serine was stereoselectively obtained from 15 mmol of d-alanine and 13.2 mmol of formaldehyde.  相似文献   

20.
In Yakut populations examined, polymorphisms of immunological and serum protein markers, including AB0 and Rhesus blood groups, HP, TF, GC, PI and C3, were revealed. Gene frequencies for the systems studied fell into the following ranges: AB0 system: r, 0.514 to 0.663; p, 0.136 to 0.306; q, 0.110 to 0.337; haptoglobin HP*1: 0.214 to 0.431; transferrin TF*C: 0.700 to 1.0; group specific component GC*1: 0.821 to 0.978; PI*M1 proteinase inhibitor (or 1-antitrypsin) PI*M1: 0.860 to 0.946; and third component of the complement C3*F: 0.031 to 0.143.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号