首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 734 毫秒
1.
We previously isolated Streptomyces racemochromogenes strain 10-3, which produces a phospholipase D (PLD) with high transphosphatidylation activity. Here, we purified and cloned the PLD (PLD103) from the strain. PLD103 exerted the highest hydrolytic activity at a slightly alkaline pH, which is in contrast to the majority of known Streptomyces PLDs that have a slightly acidic optimum pH. PLD103 shares only 71–76% amino acid sequence identity with other Streptomyces PLDs that have a slightly acidic optimum pH; thus, the diversity in the primary structure might explain the discrepancy observed in the optimum pH. The purified PLD displayed high transphosphatidylation activity in the presence of glycerol, l-serine, and 2-aminoethanol hydrochloride with a conversion rate of 82–97% in a simple one-phase system, which was comparable to the rate of other Streptomyces PLDs in a complicated biphasic system.  相似文献   

2.
A 60 kDa phospholipase D (PLD) was obtained from Streptomyces olivochromogenes by one-step chromatography on Sepharose CL-6B. Maximal activity was at pH 8 and 75°C and the enzyme was stable from pH 7 to 13 and from 55 to 75°C. Thermal and pH stability with temperature optimum of the enzyme were highest among Streptomyces PLDs reported so far. The activity was Ca2+-dependent and enhanced by detergents. The Km and Vmax values for phosphatidylcholine were 0.6 mM and 650 μmol min−1 mg−1, respectively. In addition, the enzyme also revealed transphosphatidylation activity, which was optimum at pH 8 and 50°C. The first 15 amino acid residues of the N terminal sequence were ADYTPGAPGIGDPYY, which are significantly different from the other known PLDs. The enzyme may therefore be a novel PLD with potential application in the lipid industry.  相似文献   

3.
A novel microbial transglutaminase (TGase) from the cultural filtrate of Streptomyces netropsis BCRC 12429 (Sn) was purified. The specific activity of the purified TGase was 18.2 U/mg protein with an estimated molecular mass of 38 kDa by sodium dodecyl sulfate polyacrylamide gel electrophoresis analysis. The TGase gene of S. netropsis was cloned and an open reading frame of 1,242 bp encoding a protein of 413 amino acids was identified. The Sn TGase was synthesized as a precursor protein with a preproregion of 82 amino acid residues. The deduced amino acid sequence of the mature S. netropsis TGase shares 78.9–89.6% identities with TGases from Streptomyces spp. A high level of soluble Sn TGase with its N-terminal propeptide fused with thioredoxin was expressed in E. coli. A simple and efficient process was applied to convert the purified recombinant protein into an active enzyme and showed activity equivalent to the authentic mature TGase. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

4.
Ruan L  He W  He J  Sun M  Yu Z 《Antonie van Leeuwenhoek》2005,87(4):283-288
Previous work from our laboratory has shown that most of Bacillus thuringiensis strains possess the ability to produce melanin in the presence of l-tyrosine at elevated temperatures (42 °C). Furthermore, it was shown that the melanin produced by B. thuringiensis was synthesized by the action of tyrosinase, which catalyzed the conversion of l-tyrosine, via l-DOPA, to melanin. In this study, the tyrosinase-encoding gene (mel) from B. thuringiensis 4D11 was cloned using PCR techniques and expressed in Escherichia coli DH5 . A DNA fragment with 1179 bp which contained the intact mel gene in the recombinant plasmid pGEM1179 imparted the ability to synthesize melanin to the E. coli recipient strain. The nucleotide sequence of this DNA fragment revealed an open reading frame of 744 bp, encoding a protein of 248 amino acids. The novel mel gene from B.thuringiensis expressed in E. coli DH5 conferred UV protection on the recipient strain.  相似文献   

5.
Streptomyces sp. 139 generates a novel exopolysaccharide (EPS) designated as Ebosin, which exerts an antagonistic effect on IL-1R in vitro and anti-rheumatic arthritis activity in vivo. A ste gene cluster for Ebosin biosynthesis consisting of 27 ORFs was previously identified in our laboratory. In this paper, ste16 was expressed in Escherichia coli BL21 and the recombinant protein was purified, which has the ability to catalyze the transfer of the methyl group from S-adenosylmethionine (AdoMet) to dTDP-4-keto-6-deoxy-D-glucos, which was thus identified as a methyltransferase. In order to determine the function of ste16 in Ebosin biosynthesis, the gene was disrupted with a double crossover via homologous recombination. The monosaccharide composition of EPS-m generated by the mutant strain Streptomyces sp. 139 (ste16) was found to differ from that of Ebosin. The IL-1R antagonist activity of EPS-m was markedly lower than that of Ebosin. These experimental results have shown that the ste16 gene codes for a methyltransferase which is involved in Ebosin biosynthesis. These authors contributed equally to this work.  相似文献   

6.
We characterized, identified, and cloned a major protein which comprised 16% of the total proteins from Cytophaga sp. cell lysate. After French pressing, the fraction of cell envelope was treated with 0.2% Triton X-100 to remove cell membranes. Subsequent SDS-PAGE analysis of the Triton X-100-insoluble cell wall revealed a protein of 120 kDa with a pI of 5.4, which was identified by gold immunostaining as the surface (S)-layer protein of this soil bacterium. The nucleotide sequence of the cloned S-layer protein gene (slp) encoding this protein consisted of 3144 nucleotides with an ORF for 1047 amino acids, which included a typical 32-amino acid leader peptide sequence. Amino acid sequence alignment revealed 29–48% similarity between this protein and the S-layer proteins from other prokaryotic organisms. The 120-kDa protein from the Cytophaga sp. cell lysate has been characterized as a member of the S-layer proteins, and the slp gene was cloned and expressed in Escherichia coli. E. coli harboring the plasmid containing the 600- or 800-bp DNA fragment upstream of the initiation codon of the slp gene, in the presence of the reporter gene rsda (raw starch digesting amylase), showed amylase activity in starch containing plate. The putative promoter region of slp located 600 bp upstream of the initiation codon might be used for foreign gene expression.  相似文献   

7.
Vibrio anguillarum ghosts (VAG) were generated, for the first time, using a conjugation vector containing a ghost bacteria inducing cassette, pRK-λPR-cI-Elysis, in which the expression of PhiX174 lysis gene E was controlled by the P R /cI regulatory system of lambda phage. By scanning electron microscopy, holes ranging 80–200 nm in diameter were observed in the VAG. To avoid the presence of bacterial genomic DNA and an antibiotic resistance gene in the final VAG product, we constructed a new dual vector, pRK-λPR-cI-E-SNA, containing the E-mediated lysis cassette and the staphylococcal nuclease A (SNA)-mediated DNA degradation cassette, and generated safety-enhanced VAG for use as a fish vaccine.  相似文献   

8.
According to the amino acid sequence, a codon-optimized xylanase gene (xynA1) from Thermomyces lanuginosus DSM 5826 was synthesized to construct the expression vector pHsh-xynA1. After optimization of the mRNA secondary structure in the translational initiation region of pHsh-xynA1, free energy of the 70 nt was changed from −6.56 to −4.96 cal/mol, and the spacing between AUG and the Shine-Dalgarno sequence was decreased from 15 to 8 nt. The expression level was increased from 1.3 to 13% of total cell protein. A maximum xylanase activity of 47.1 U/mL was obtained from cellular extract. The recombinant enzyme was purified 21.5-fold from the cellular extract of Escherichia coli by heat treatment, DEAE-Sepharose FF column and t-Butyl-HIC column. The optimal temperature and pH were 65 °C and pH 6.0, respectively. The purified enzyme was stable for 30 min over the pH range of 5.0–8.0 at 60 °C, and had a half-life of 3 h at 65 °C.  相似文献   

9.
Two degenerate primers established from the consensus sequences of bacterial leucine aminopeptidases (LAP) were used to amplify a 360-bp gene fragment from the chromosomal DNA of thermophilic Bacillus kaustophilus CCRC 11223 and the amplified fragment was successfully used as a probe to clone a leucine aminopeptidase (lap) gene from a genomic library of the strain. The gene consists of an open reading frame (ORF) of 1,494 bp and encodes a protein of 497 amino acid residues with a calculated molecular mass of 53.7 kDa. The complete amino acid sequence of the cloned enzyme showed greater than 30% identity with prokaryotic and eukaryotic LAPs. Phylogenetic analysis showed that B. kaustophilus LAP is closely related to the enzyme from Bacillus subtilis and is grouped with the M17 family. His6-tagged LAP was generated in Escherichia coli by cloning the coding region into pQE-30 and the recombinant enzyme was purified by nickel-chelate chromatography. The pH and temperature optima for the purified enzyme were 8 and 65°C, respectively, and 50% of its activity remained after incubation at 60°C for 32 min. The enzyme preferentially hydrolyzed l-leucine-p-nitroanilide (l-Leu-p-NA) followed by Cys derivative.Communicated by G. Antranikian  相似文献   

10.
MurA [UDP-N-acetylglucosamine (UDP-NAG) enolpyruvyl transferase] is a key enzyme involved in bacterial cell wall peptidoglycan synthesis and a target for the antimicrobial agent fosfomycin, a structural analog of the MurA substrate phosphoenol pyruvate. In this study, we identified, cloned and sequenced a novel murA gene from an environmental isolate of Vibrio fischeri that is naturally resistant to fosfomycin. The fosfomycin resistance gene was isolated from a genomic DNA library of V. fischeri. An antimicrobial agent hypersensitive strain of Escherichia coli harboring murA from V. fischeri exhibited a high fosfomycin resistance phenotype, with minimum inhibitory concentration of 3,000 μg/ml. The cloned murA gene was 1,269 bp long encoding a 422 amino acid polypeptide with an estimated pI of 5.0. The deduced amino acid sequence of the putative protein was identified as UDP-NAG enolpyruvyl transferase by homology comparison. The MurA protein with an estimated molecular weight of 44.7 kDa was expressed in E. coli and purified by affinity chromatography. MurA of V. fischeri will be a useful target to identify potential inhibitors of fosfomycin resistance in pharmacological studies.  相似文献   

11.
The sweet protein monellin gene was expressed in Bacillus subtilis under the control of the Bacillus subtilis sacB promoter and signal peptide sequence. A 294-bp DNA fragment, coding for sweet protein monellin, was ligated into the Escherichia coli/B. subtilis shuttle vector pHPC, producing pHPMS, which was subsequently transformed into B. subtilis QB1098, DB104, and DB403. The peptide efficiently directed the secretion of monellin from the recombinant B. subtilis cells. A maximum yield of monellin of 0.29 g protein l−1 was obtained from the supernatant of B. subtilis DB403 harboring pHPMS. SDS-PAGE confirmed the purity of the recombinant product.  相似文献   

12.
For the heterologous expression of the msp2 gene from the edible mushroom Marasmius scorodonius in Escherichia coli the cDNA encoding the extracellular Msp2 peroxidase was cloned into the pBAD III expression plasmid. Expression of the protein with or without signal peptide was investigated in E. coli strains TOP10 and LMG194. Different PCR products were amplified for expression of the native target protein or a protein with a signal peptide. Omitting the native stop codon and adding six His-residues resulted in a fusion protein amenable to immune detection and purification by immobilised metal affinity chromatography. In E. coli the recombinant protein was produced in high yield as insoluble inclusion bodies. The influence of different parameters on MsP2 refolding was investigated. Active enzyme was obtained by glutathione-mediated oxidation in a medium containing urea, Ca2+, and hemin.  相似文献   

13.
14.
Streptomyces sp. 139 produces a novel exopolysaccharide (EPS) designated Ebosin which has antagonistic activity for IL-1R in vitro and remarkable anti-rheumatic arthritis activity in vivo. We previously identified a ste (Streptomyces eps) gene cluster consisting of 27 ORFs responsible for Ebosin biosynthesis. The gene product of ste15 shows high homology to known glycosyltransferases (GTFs). To elucidate its function in Ebosin biosynthesis, the ste15 gene was knocked out with a double crossover via homologous recombination. Our analysis of monosaccharide composition for EPS-m produced by the mutant strain Streptomyces sp. 139 (ste15 ) showed that glucose was significantly diminished compared to its natural counterpart Ebosin. This derivative of Ebosin lost the antagonistic activity for IL-1R in vitro and its molecular mass was smaller than Ebosin. These results have demonstrated that the ste15 gene codes for a GTF for glucose, which is functionally involved in Ebosin biosynthesis.  相似文献   

15.
An actinomycetes expression vector (pIBR25) was constructed and applied to express a gene from the kanamycin biosynthetic gene cluster encoding 2-deoxy-scyllo-inosose synthase (kanA) in Streptomyces lividans TK24. The expression of kanA in pIBR25 transformants reached a maximum after 72 h of culture. The plasmid pIBR25 showed better expression than pSET152, and resulted in the formation of insoluble KanA when it was expressed in Escherichia coli. This strategy thus provides a valuable tool for expressing aminoglycoside-aminocyclitols (AmAcs) biosynthetic genes in Streptomyces spp.  相似文献   

16.
Nattokinase producing bacterium, B. subtilis YF38, was isolated from douchi, using the fibrin plate method. The gene encoding this enzyme was cloned by polymerase chain reaction (PCR). Cytoplasmic expression of this enzyme in E. coli resulted in inactive inclusion bodies. But with the help of two different signal peptides, the native signal peptide of nattokinase and the signal peptide of PelB, active nattokinase was successfully expressed in E. coli with periplasmic secretion, and the nattokinase in culture medium displayed high fibrinolytic activity. The fibrinolytic activity of the expressed enzyme in the culture was determined to reach 260 urokinase units per micro-liter when the recombinant strain was induced by 0.7 mmol l−1 isopropyl-β-D- thiogalactopyranoside (IPTG) at 20°C for 20 h, resulting 49.3 mg active enzyme per liter culture. The characteristic of this recombinant nattokinase is comparable to the native nattokinase from B. subtilis YF38. Secretory expression of nattokinase in E. coli would facilitate the development of this enzyme into a therapeutic product for the control and prevention of thrombosis diseases.  相似文献   

17.
Bacterial blight (BB) caused by Xanthomonas oryzae pv. oryzae (Xoo) is a devastating disease in rice worldwide. The resistance gene Xa7, which provides dominant resistance against the pathogen with avirulence (Avr) gene AvrXa7, has proved to be durably resistant to BB. A set of SSR markers were selected from the “gramene” database based on the Xa7 gene initial mapping region on chromosome 6. These markers were used to construct a high-resolution genetic map of the chromosomal region surrounding the Xa7 gene. An F2 mapping population with 721 highly susceptible individuals derived from a cross between the near isogenic lines (NILs) IRBB7 and IR24 were constructed to localize the Xa7 gene. In a primary analysis with eleven polymorphic SSR markers, Xa7 was located in approximately the 0.28-cM region. To walk closer to the target gene, recombinant F2 individuals were tested using newly developed STMS (sequence tagged microsatellite) markers. Finally, the Xa7 gene was mapped to a 0.21-cM interval between the markers GDSSR02 and RM20593. The Xa7-linked markers were landed on the reference sequence of cv. Nipponbare through bioinformatics analysis. A contig map corresponding to the Xa7 gene was constructed. The target gene was assumed to span an interval of approximately 118.5-kb which contained a total of fourteen genes released by the TIGR Genome Annotation Version 5.0. Candidate-gene analysis of Xa7 revealed that the fourteen genes encode novel domains that have no amino acid sequence similar to other cloned Xa(xa) genes. Shen Chen and Zhanghui Huang are contributed equally to this work.  相似文献   

18.
Attacin, a 20 kDa antibacterial peptide, plays an important role in immunity. To understand this gene better, gene cloning, expression and biological activity detection of Attacin A was carried out in present study. The full-length open reading frame (ORF) coding for Attacin A gene was generated using RT-PCR which takes total RNA extracted from Drosophila as the template. The gene was inserted directionally into the prokaryotic expression vector pET-32a (+). The resulting recombinant plasmid was transformed into E. coli Rosetta. SDS–PAGE was carried out to detect the expression product which was induced by IPTG. The antimicrobial activity and hemolysis activity were tested in vitro after purification. Agarose gel electrophoresis indicated that the complete ORF of Attacin A gene has been cloned successfully from Drosophila stimulated by E. coli which includes 666 bp and encodes 221 AA. The gene encoding mature Attacin A protein was amplified by PCR from the recombinant plasmid containing Attacin A, which includes 570 bp in all. SDS–PAGE analysis demonstrated that the fusion protein expressed was approximately 39.2 kDa. Biological activities detection showed that this peptide exhibited certain antibacterial activity to several G− bacteria, as well as minor hemolysis activity for porcine red blood cells. In conclusion, Attacin A gene was cloned and expressed successfully. It was the basis for further study of Attacin.  相似文献   

19.
The srfA operon is required for the nonribosomal biosynthesis of the cyclic lipopeptide, surfactin. The srfA operon is composed of the four genes, srfAA, srfAB, srfAC, and srfAD, encoding the surfactin synthetase subunits, plus the sfp gene that encodes phosphopantetheinyl transferase. In the present study, 32 kb of the srfA operon was amplified from Bacillus subtilis C9 using a long and accurate PCR (LA-PCR), and ligated into a pIndigoBAC536 vector. The ligated plasmid was then transformed into Escherichia coli DH10B. The transformant ET2 showed positive signals to all the probes for each open reading frame (ORF) region of the srfA operon in southern hybridization, and a reduced surface tension in a culture broth. Even though the surface-active compound extracted from the E. coli transformant exhibited a different R f value of 0.52 from B. subtilis C9 or authentic surfactin (R f = 0.63) in a thin layer chromatography (TLC) analysis, the transformant exhibited a much higher surface-tension-reducing activity than the wild-type strain E. coli DH10B. Thus, it would appear that an intermediate metabolite of surfactin was expressed in the E. coli transformant harboring the srfA operon.  相似文献   

20.
The bkdAB gene cluster, which encodes plausible E1 and E2 components of the branched-chain α-keto acid dehydrogenase (BCDH) complex, was isolated from Streptomyces virginiae in the vicinity of a regulatory island for virginiamycin production. Gene disruption of bkdA completely abolished the production of virginiamycin M (a polyketide-peptide antibiotic), while the production of virginiamycin S (a cyclodepsipeptide antibiotic) was unaffected. Complementation of the bkdA disruptant by genome-integration of intact bkdA completely restored the virginiamycin M production, indicating that the bkdAB cluster is essential for virginiamycin M biosynthesis, plausibly via the provision of isobutyryl-CoA as a primer unit. In contrast to a feature usually seen in the Streptomyces E1 component, namely, the separate encoding of the α and β subunits, S. virginiae bkdA seemed to encode the fused form of the α and β subunits, which was verified by the actual catalytic activity of the fused protein in vitro using recombinant BkdA overexpressed in Escherichia coli. Supply of an additional bkdA gene under the strong and constitutive promoter ermE* in the wild-type strain of S. virginiae resulted in enhanced production of virginiamycin M, suggesting that the supply of isobutyryl-CoA is one of the rate-limiting factors in the biosynthesis of virginiamycin M.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号