首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
高寒草甸是青藏高原地区的主要植被类型,目前对其温室气体研究多集中于生长季.本文利用静态箱-气相色谱法,对非生长季高寒草甸温室气体排放特征及其与主要环境因子的关系进行了研究.结果表明:非生长季高寒草甸表现为CO2和N2O的源、CH4的汇.其中非生长季CO2通量平均值为89.33 mg·m-2·h-1,累积排放通量为280.01g· m-2;CH4通量平均值为-11.35 μg·m-2·h-1,累积吸收通量为124.74 mg·m-2;N2O通量平均值为8.02 μg·m-2·h-1,累积排放通量为39.51 mg·m-2.非生长季CO2、CH4和N2O累积排放通量分别占全年的13.33%、53.47%和62.67%.冻融期(2012年4月)CH4累积吸收通量较小,只占非生长季的4.5%;而CO2和N2O累积排放通量较大,分别占非生长季的25.8%和20.8%.非生长季CO2通量与温度(气温、5和10 cm土壤温度)和5 cm土壤湿度均存在显著正相关关系,而CH4和N2O通量仅与5 cm土壤湿度存在显著正相关.研究表明,虽然冻融期CH4累积吸收通量在非生长季累积量中比重较小,但非生长季CH4和N2O累积排放量却占全年累积排放量的1/2以上,在温室气体累积通量评估中不容忽视.  相似文献   

2.
寒温带兴安落叶松林土壤温室气体通量的时间变异   总被引:2,自引:0,他引:2  
采用静态箱/气相色谱(GC)法,对寒温带兴安落叶松林区6-9月生长季土壤CO2、CH4和N2O通量进行原位测定,研究了土壤温室气体通量的季节和昼夜变化及其与环境因子的关系.结果表明:在生长季,兴安落叶松林土壤为大气CH4的汇,吸收通量为22.3~107.8 μg CH4-C·m-2·h-1,6-9月月均甲烷吸收通量为(34.0±7.1)、(71.4±9.4)、(86.3±7.9)和(40.7-±6.2) μg·m-2·h-1;不同季节土壤CH4昼夜通量的变化规律相同,一天中均在10:00达到最大吸收高峰.土壤CO2日通量呈明显的双峰曲线,月均CO2通量大小顺序为7月>8月>6月>9月.土壤N2O通量变异较大,在-9.1 ~31.7μg·m-2·h-1之间.土壤温度和湿度是影响CO2和CH4通量的重要因子,N2O通量主要受温度的影响.在兴安落叶松林区,10:00左右观测获得的温室气体地-气交换通量,经矫正后可以代表当日气体通量.  相似文献   

3.
森林在调控温室气体排放方面有重要作用,随着人工林的迅速发展,其温室气体通量和对施肥的响应逐渐引起广泛关注。为了解施氮对桉树人工林生长季和非生长季土壤温室气体通量的影响,在广西东门林场尾巨桉人工林样地设置低(84.2 kg N·hm-2)、中(166.8 kg N·hm-2)、高(333.7 kg N·hm-2)3个施氮水平和不施氮对照,采用静态箱-气相色谱法监测土壤CO2、N2O和CH4通量。结果表明:(1)不同施氮处理的桉树人工林土壤CO2、CH4和N2O年均排放通量分别为214~271 mg CO2·m-2·h-1、-47~-37 kg CH4·m-2·h-1和16~203 kg N2O·m-2·h-1;土壤CO2排放通量在生长季高于非生长季,CH4和N2O通量未表现出明显季节变化。(2)施氮显著增加了土壤CO2和N2O年均排放通量,其促进效应主要集中在生长季(施氮后的4个月,即6—9月),且随时间增加,效应减弱。(3)施氮显著降低了土壤CH4年均吸收通量。因此,在维持桉树人工林生产力的基础上,结合季节变化,合理调控施氮量将有助于减少桉树林土壤温室气体排放。  相似文献   

4.
荒漠生物结皮-土壤系统温室气体(CO2、CH4和N2O)通量数据的缺乏,给区域尺度上温室气体通量的估算带来很大的不确定性.2011—2012年在腾格里沙漠东南缘沙坡头地区不同时期建植的人工植被固沙区,采用静态箱-气相色谱法研究了不同类型和不同演替阶段生物结皮覆盖的土壤CO2、CH4和N2O的通量特征.结果表明:结皮类型、恢复时间及二者与采样时间的互作显著影响CO2通量;恢复时间、结皮类型与采样时间的互作显著影响CH4通量;采样日期显著影响CO2、CH4和N2O通量.苔藓结皮年均CO2通量(105.1 mg·m-2·h-1)显著高于藻类结皮(37.7 mg·m-2·h-1).荒漠生物结皮-土壤系统年均CH4和N2O吸收通量分别为19.9和3.4μg·m-2·h-1.藻类结皮的年均CH4和N2O吸收通量略高于苔藓结皮,但差异并不显著.随着荒漠生物结皮的发育和演替的深入,生物结皮-土壤系统呼吸逐渐增加,CH4和N2O吸收能力逐渐下降.与藻类结皮相比,苔藓结皮呼吸对温、湿度的变化更为敏感,且随着生物结皮的发育和演替的深入逐渐增强.温度和湿度不是决定荒漠生物结皮-土壤CH4和N2O通量的关键因子.  相似文献   

5.
Aims: It is important to study the effects of land use change and reduced precipitation on greenhouse gas fluxes (CO2, CH4 and N2O) of forest soils. Methods: The fluxes of CO2, CH4 and N2O and their responses to environmental factors of primary forest soil, secondary forest soil and artificial forest soil under a reduced precipitation regime were explored using the static chamber and gas chromatography methods during the period from January to December in 2014. Important findings: Results indicate that CH4 uptake of primary forest soil ((-44.43 ± 8.73) μg C·m-2·h-1) was significantly higher than that of the secondary forest soil ((-21.64 ± 4.86) μg C·m-2·h-1) and the artificial forest soil ((-10.52 ± 2.11) μg C·m-2·h-1). CH4 uptake of the secondary forest soil ((-21.64 ± 4.86) μg C·m-2·h-1) was significantly higher than that of the artificial forest ((-10.52 ± 2.11) μg C·m-2·h-1). CO2 emissions of the artificial forest soil ((106.53 ± 19.33) μg C·m-2·h-1) were significantly higher than that of the primary forest soil ((49.50 ± 8.16) μg C·m-2·h-1) and the secondary forest soil ((63.50 ± 5.35) μg C·m-2·h-1) (p < 0.01). N2O emissions of the secondary forest soil ((1.91 ± 1.22) ug N·m-2·h-1) were higher than that of the primary forest soil ((1.40 ± 0.28) μg N·m-2·h-1) and the artificial forest soil ((1.01 ± 0.86) μg N·m-2·h-1). Reduced precipitation (-50%) had a significant inhibitory effect on CH4 uptake of the artificial forest soil, while it enhanced CO2 emissions of the primary forest soil and the secondary forest soil. Reduced precipitation had a significant inhibitory effect on CO2 emissions of the artificial forest soil and N2O emissions of the secondary forest (p < 0.01). Reduced precipitation promotes N2O emissions of the primary forest soil and the artificial forest soil. CH4 uptake of the primary forest and the secondary forest soil increased significantly with the increase of soil temperature under natural and reduced precipitation. CO2 and N2O emission fluxes of the primary forest soil, secondary forest soil and artificial forest soil were positively correlated with soil temperature (p < 0.05). Soil moisture inhibited CH4 uptake of the secondary forest soil and the artificial forest soil (p < 0.05). CO2 emissions of the primary forest soil were significantly positively correlated with soil moisture (p < 0.05). N2O emissions of primary forest soil and secondary forest soil were significantly correlated with the nitrate nitrogen content (p < 0.05). It was implied that reduced precipitation and land use change would have significant effects on greenhouse gas emissions of subtropical forest soils.  相似文献   

6.
施氮对桉树人工林生长季土壤温室气体通量的影响   总被引:2,自引:0,他引:2  
李睿达  张凯  苏丹  逯非  万五星  王效科  郑华 《生态学报》2015,35(18):5931-5939
施肥是维持短期轮伐人工林生产量的重要手段,为了提高肥料利用效率,缓释氮肥逐渐成为广泛采用的氮肥种类。评估缓释肥施用对人工林生长季土壤温室气体通量的影响对于全面评估人工林施肥的环境效应具有重要意义。以我国南方广泛种植的桉树林为对象,采用野外控制实验研究了4种施氮处理(对照CK:0 kg/hm2;低氮L:84.2 kg/hm2;中氮M:166.8 kg/hm2;高氮H:333.7 kg/hm2)对土壤-大气界面3种温室气体(CO2、N2O和CH4)通量的影响,结果表明:(1)4种施氮水平下CO2排放通量、N2O排放通量和CH4吸收通量分别为276.84—342.84 mg m-2h-1、17.64—375.34μg m-2h-1和29.65—39.70μg m-2h-1;施氮显著促进了N2O的排放(P0.01),高氮处理显著增加CO2排放和显著减少CH4吸收(P0.05),且CO2排放通量与CH4吸收通量随着施氮量的增加分别呈现增加和减少的趋势;(2)生长季CO2和N2O排放呈现显著正相关(P0.01),CO2排放和CH4吸收呈现显著负相关(P0.05),N2O排放和CH4吸收呈现显著负相关(P0.01);(3)土壤温度和土壤水分是影响CO2、N2O排放通量和CH4吸收通量的主要环境因素。结果表明:施用缓释肥显著增加了桉树林生长季土壤N2O排放量,且高氮处理还显著促进CO2排放和显著抑制CH4吸收,上述研究结果可为人工林缓释肥对土壤温室气体通量评估提供参数。  相似文献   

7.
刘实  王传宽  许飞 《生态学报》2010,30(15):4075-4084
中高纬度森林土壤在漫长的非生长季中对重要温室气体——二氧化碳(CO2)、甲烷(CH4)和氧化亚氮(N2O)的释放或吸收在碳氮年收支中作用很大,但目前研究甚少。采用静态暗箱-气相色谱法,比较研究东北东部4种典型温带森林土壤表面CO2、CH4和N2O通量在非生长季中的时间动态及其影响因子。结果表明:4种森林土壤在非生长季中整体上均表现为CO2源、N2O源和CH4汇的功能。红松林、落叶松林、蒙古栎林、硬阔叶林的非生长季平均土壤表面CO2通量分别为(65.5±8.1)mgm-2h-1(平均值±标准差)、(70.5±10.2)mgm-2h-1、(77.1±8.0)mgm-2h-1、(80.5±23.5)mgm-2h-1;CH4通量分别为(-17.2±4.6)μgm-2h-1、(-15.4±4.2)μgm-2h-1、(-31.5±4.5)μgm-2h-1、(-23.6±4.1)μgm-2h-1;N2O通量分别为(19.3±5.1)μgm-2h-1、(11.5±2.5)μgm-2h-1、(16.4±4.0)μgm-2h-1、(14.4±5.4)μgm-2h-1;其中非生长季土壤表面CO2总排放量分别为143.4gm-2、162.8gm-2、189.9gm-2、252.7gm-2,分别占其年通量的7.3%、10.6%、8.4%和8.5%。所有林型非生长季土壤表面CO2通量在春季土壤解冻前均维持在较低水平;在解冻进程中随温度升高而增大。土壤表面CO2通量与5cm深土壤温度(T5)呈极显著的指数函数关系。在隆冬时节出现CH4净释放现象,但释放强度及其出现时间因林型而异,其中以红松林的释放强度较大,高达43.6μgm-2h-1。土壤表面CH4通量与T5呈显著的负相关。土壤表面N2O通量的时间动态格局在林型间的分异较大,但在春季土壤解冻阶段均释放出N2O,而释放峰值和出现时间因林型而异。土壤表面N2O通量与0—10cm深土壤含水量呈显著的正相关(红松林除外)。研究展示了不同温带森林类型的土壤水热条件对其非生长季土壤CO2、CH4和N2O通量的重要影响,但这3种温室气体的林型间分异的生物学机理尚需进一步研究。  相似文献   

8.
太湖流域源头溪流氧化亚氮(N_2O)释放特征   总被引:6,自引:0,他引:6  
袁淑方  王为东 《生态学报》2012,32(20):6279-6288
采用密闭箱法研究太湖流域源头溪流N2O释放特征及其影响因素。结果显示:南苕溪N2O释放通量范围在-18.11—397.42μg.m-.2h-1,平均值为(30.37±10.87)μg.m-.2h-1。溪流N2O释放呈现明显的季节模式。冬季释放通量最低,仅为(9.69±7.10)μg.m-.2h-1,夏季释放通量较高,为(17.17±17.35)μg.m-.2h-1;而释放高峰发生于汛期,其N2O释放通量可达(125.97±90.77)μg.m-.2h-1。持续降雨带来的山洪爆发及大量径流输入是造成汛期N2O大量释放的主要原因。从上游源头区至下游农田与城区,N2O释放通量逐渐升高;流域污染梯度对N2O释放通量影响显著。统计分析表明:水体硝态氮负荷是控制流域N2O释放通量变化的主导因素,其他因素如磷含量、溶解氧、地势因素对通量也具有倾向性的显著影响。估算苕溪干流临安段N2O年释放通量可达到0.38 t/a。结果显示:河流人为污染负荷增加时可显著促进河流N2O的释放。  相似文献   

9.
采用野外原位实验静态箱-气相色谱法,研究了兴安岭多年冻土不同程度退化地区生长季湿地土壤温室气体CH4、CO2和N2O的排放通量特征,同时分析了环境因子对土壤温室气体排放的影响。结果表明:1)3种类型冻土区(季节性冻土区、岛状多年冻土区、连续多年冻土区,分别用D1、D2、D3表示)土壤在生长季时期表现为CO2和N2O的源;D1和D3为CH4的源,D2为CH4的汇。D1、D2、D3土壤在生长季中平均CH4排放通量分别为(0.127±0.021)、(-0.020±0.006)、(0.082±0.019)mg·m^-2·h^-1;CO2排放通量分别为(371.50±66.73)、(318.43±55.67)、(213.19±37.05)mg·m^-2·h^-1;N2O排放通量分别为(24.05±2.62)、(8.07±2.42)、(2.17±0.25)μg·m-2·h-1。土壤CO2和N2O排放通量随多年冻土退化程度的加剧呈现出升高的趋势。2)细根生物量、凋落物生物量、全碳、全氮、可溶性有机碳、总可溶性氮、土壤容重、土壤温度、土壤含水量等均影响温室气体排放,3种不同类型冻土区土壤CH4、CO2和N2O的排放差异是诸多影响因子综合作用的结果。  相似文献   

10.
玉渡山水库生长季温室气体排放特征及其影响因素   总被引:2,自引:0,他引:2  
为了探讨温带水库温室气体排放规律,采用静态箱-色谱分析法,研究了温带地区库龄10年内的北京玉渡山水库生长季3种温室气体CO2、CH4及N2O排放特征,及其影响因子。结果表明:样地类型、测定月份与样地类型交互作用对3种温室气体通量影响极显著,5月消落带CO2通量(664.31mg·m-2·h-1)达到最大,显著高于入库口和浅水区;8月消落带CH4通量(0.87mg·m-2·h-1)及N2O通量(3.05mg·m-2·h-1)最大;8月,切除消落带样地地上植物后,3种温室气体通量均有所降低。CO2通量与地下5cm地温、氧化还原电位和水体总氮显著正相关,与地上生物量和水体pH显著负相关;CH4通量与地表温度、地上生物量、水体pH呈显著相关,与水体总氮和水体铵态氮显著负相关;N2O通量与水体总氮含量显著相关,与水体pH显著负相关。采取平均估值法初步推测,在生长季,水库消落带、入库口及浅水区CO2排放量依次为15960、2160、-70kg·hm-2;CH4排放量依次20.04、-7.05、14.8kg·hm-2;N2O排放量依次83.42、3.79、-1.54kg·hm-2;表明消落带3种温室气体的排放量均较高,为玉渡山水库3种温室气体排放的重点区域。  相似文献   

11.
Summary Concentration of N, P, K, Ca, Mg and S in summer groundnut crop was higher than in kharif while Zn, Fe, Mn and Cu contents were higher in summer crop. Kernel's N, P and Zn; Leaflet's Ca and Mn; Stem's K and Fe; Root's S and Cu and Petiole's Mg contents were highest. Shell's N, P, K, Mg, S, Zn and Cu; Kernel's Ca, Fe and Mn contents were the least. N, P, K, S, Zn and Cu concentrations decreased linearly as the crop grew. Ca, Mg, Fe and Mn concentrations did not display any distinct pattern. Ca concentration was positively correlated with pod yield in both the seasons.  相似文献   

12.
The cell has been represented as a charged liquid drop. Contrary to the DLVO-theory, the effect of the surface potential upon the value of the interfacial tension of the cell membrane has also been taken into consideration. The cell membrane has visco-elastic properties and its constituents may move against each other. Cell movement is caused by the appearance of a small number of the electrically charged constituents of the cell membrane on the leading edge of the cell. This produces a local decrease in the surface tension and the cell membrane expansion. At the moment of contact between two cells proton transfers occur between the strongly negatively charged microvilli of one cell and the body of the other, analogous to a condenser breakdown. This, through the effect on the surface tension, causes contact inhibition of movement. The distribution of the proton dissociable groups modifies the interaction between the cells (differentiation) and between the cell and the substratum (adhesion). Adsorption of the charged compounds at the surface of the cell membrane, decreasing the surface potential and increasing the surface tension, causes the phenomena of chemotaxis, phagocytosis and pinocytosis. Cell division, considered in the terms of the surface energy, requires an adequate supply of considerable quantities of energy inversely proportional to the surface potential value. In case of a reduction of the distance between the cells, their surface potential and the energetic barrier of the cell division processes increases, and causes contact inhibition of cell division. Due to their high charge, division of neoplastic cells is inhibited much later than division of normal cells, or is completely ininhibited due to geometric conditions. Fusion of the cell membrane in the intra-cellular and intercellular processes is a reverse process in relation to the cell division.  相似文献   

13.
Acute and chronic toxicity tests for malathion, diazinon, copper (Cu), mercury (Hg), lead (Pb), zinc (Zn), nickel (Ni), and iron (Fe) were conducted. Mortalities ofBarilius vagra andCyprinus carpio (common carp) were variable but LC50-96 hr were similar for pesticides. AdultB. vagra seem to be more sensitive to malathion than juvenile carp. Both juvenile carp and adultB. vagra were extremely sensitive to diazinon. Long-term exposure to pesticides modified morphology and behavior. The LC50-96 values for Cu, Hg, and Pb were 0.3, 0.16, and 0.44, respectively, for smaller fish and 1.0, 0.77, and 1.33, respectively, for larger fish. Replicate LC50 values for Zn, Ni, and Fe were somewhat variable, and for these metals, the size of the fish seemed to affect response because LC50 values increased as fish size increased. Cooper, Pb, Zn, and Fe residues following exposure to sublethal concentrations of these metals for 15 d were significantly greater in whole juvenile common carp than in controls.  相似文献   

14.
15.
The effect of age and gender on major, minor, and trace element contents in the intact rib bone of 80 relatively healthy 15–55-year-old women and men was investigated. Contents or upper limit of contents of 16 chemical elements in the rib bone were determined by inductively coupled plasma atomic emission spectrometry (ICP-AES). Mean values (M?±?SΕΜ) for the mass fraction of Ba, Ca, Cu, Fe, K, Li, Mg, Na, P, S, Sr, and Zn (milligram per kilogram of dry bone) were as follows: 2.54?±?0.16, 171,400?±?4,050, 1.35?±?0.22, 140?±?11, 1,874?±?71, 0.049?±?0.011, 2,139?±?38, 5,378?±?88, 75,140?±?1,660, 1,881?±?51, 291?±?20, and 92.8?±?1.5, respectively. The upper limits of contents of Al, B, Mn, and V were <7.20, <0.65, <0.36, and <0.03, respectively. Statistically significant tendency for the Ca, Mg, and P content to decrease with age was found in the human rib bone, regardless of gender. The mass fraction of Fe in the male rib bone increases with age. It was shown that higher Ca, Mg, Na, P, and Sr mass fractions as well as lower Fe content were typical of female ribs as compared to those in male ribs.  相似文献   

16.
The sieve-element plastids of 69 species of theCaryophyllales were investigated by transmission electron microscopy. All contained the specific subtype-P3 plastids characterized by a peripheral ring of protein filaments. The presence or absence of an additional central protein crystal and their shape being either polygonal or globular as well as the average sizes of the sieve-element plastids are useful features in the characterization of some families.—Barbeuia contains sieve-element plastids that confirm its placement within thePhytolaccaceae. Lyallia differs fromHectorella by including small starch grains in their sieve-element plastids, which otherwise by their globular crystals negate a closer connection to theCaryophyllaceae. The lack of a central protein crystal in its form-P3fs plastids placesMicrotea best within theChenopodiaceae. Sarcobatus, a so far uncontested member of theChenopodiaceae, contains form-P3cf plastids, i.e., including a central crystal not found elsewhere in this family.Telephium andCorrigiola, shifted back and forth betweenMolluginaceae andCaryophyllaceae, have form-P3cf(s) plastids with a polygonal crystal which favor their placement within theCaryophyllaceae.  相似文献   

17.
18.
The translocation of the radionuclides of Co, Zn, Se, Rb, Y, Tc, and Re into red and green fruits, flesh, seeds, rind, calyxes, flower, leaves, and stems via the root of the tomato plant at two different growth stages was studied by a multitracer technique. The contents (%/g) of Co, Zn, Se, and Y in the roots were the highest among the organs, but only small amounts of them were translocated into the aerial parts after 5 d cultivation with a multitracer. In contrast, Rb, Tc, and Re showed rapid translocation into the stems and leaves from the root. In the plants cultivated for 95 d with a multitracer, Zn, Se, and Rb distributed in all of the organs, Co in the organs except for flowers, and Y, Tc, and Re in the limited organs. The translocation ratio of the elements for the edible part of the plants cultivated for 95 d decreased in the order of Rb>Zn>Co≈Se>Tc≈Y>Re. The transfer factor of the elements for tomato fruit was determined to be in the range of 10−5–10−2. The characteristic translocation behavior of the elements gives us fundamental information on the assessment of pollutant uptake by the tomato plant.  相似文献   

19.
The goal of this article was to establish reference ranges of the concentration of trace elements in human serum and to compare these results with those reported by other authors. We describe the sample preparation and measurement conditions that allow the rapid, precise, and accurate determination of Al, As, B, Be, Cd, Co, Cu, Fe, Li, Mn, Mo, Ni, Rb, Se, Sr, and Zn in human serum samples (n=110) by inductively coupled plasma-mass spectrometry (ICP-MS). Accuracy and precision were determined by analyzing three reconstituted reference serum samples by comparison with other methods and by the standard addition procedure. The advantages of the ICP-MS method include short time of analysis of the elements mentioned, low detection limit, high precision, and high accuracy. Disadventages include a high risk of contamination due to the presence of some of the elements of interest in the environment, the relatively delicate sample handling, and the high cost of the equipment.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号