首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Uptake and distribution of trace elements in maturing soybean   总被引:2,自引:0,他引:2  
The uptake and translocation of trace elements in maturing soybean plants cultivated on soil were studied over 360 h under diurnal conditions after the administration of a multitracer. The contents (%/g) of Co, Se, Rb, Sr, Ru, Rh, and Cs in all the leaves and stems collected from each node increased up to around 200 h after the administration of the multitracer and then decreased with time. The contents of Zn, Tc, and Re in the leaves and Zn in the stems continuously increased up to 360 h, but Tc and Re in the stems showed maximum content. This observation suggests the translocation of these elements from old leaves to growing leaves via stems. The relationship between the content (%/g) of an element in the seeds and pods, and the cultivation time varied depending on the kind of element and on the growth steps. Mathematical analyses were applied to the behavior of the elements in the soybean. The time dependence of the uptake rate (%/g/h) and distribution of elements in each part of the plant were characteristic of the element.  相似文献   

2.
To estimate the applicability of yeastSaccharomyces cerevisiae as a radioisotope accumulator, biosorption of 18 radionuclides (isotopes of Be, Na, Sc, V, Cr, Mn, Fe, Co, Zn, As, Se, Rb, Sr, Y, Zr, Tc, Ru, and Rh) by the cells was tested using a multitracer technique. This technique enables us to examine the uptake of various elements under an identical condition. We showed that the yeast has ability to take up radioactive tracers of Be, Sc, V, Cr, Mn, Fe, Co, Zn, As, Se, Sr, Y, Zr, Ru, and Rh from an aqueous environment. Tracers of Be, Sc, Mn, Co, Zn, Se, Sr, Y, and Zr were distributed in both cell walls and other cell parts. Moreover, tracers of Sc, Mn, Co, Zn, Se, Sr, and Y were present as soluble and insoluble forms, and most of the Be and Zr were present as an insoluble form in the cells.  相似文献   

3.
The effects of La3+ on the uptake of trace elements (Se, Co, V, and Tc) in cucumber plants were studied by a radioactive multitracer technique. It was observed that the uptake and distribution of these trace elements in roots, stems, and leaves are different under different La3+ treatments. Furthermore, in the control, the plant accumulates 75Se, 56Co, and 48V all in the order roots>leaves>stems, whereas 95mTc was in the order leaves>stems>roots. The accumulations of 75Se and 95mTc in plants treated with different La3+ concentration were in the same order as those in the control, but the uptakes percentages of other kinds of element changed differently. The results indicate that lanthanum treatments to a growing cucumber lead to the change of uptake of trace elements, which suggest that a rare earth element is directly or indirectly involved in the ion transport of the plant and affects plant growth by regulating the uptake and distribution of elements that influence the plant cell physiology and biochemistry.  相似文献   

4.
A multitracer solution obtained from the nuclear reaction of selenium with 25-MeV/nucleon 40Ar ions was orally administered to normal and tumor-bearing Balb/c male mice. After 96 h, the mice were sacrificed and the elemental distribution was determined in various tissues, organs, and blood. The uptake of Na, Rb, Ga, Sc, V, Cr, Mn, Co, Fe, Zn, Y, Zr, Tc, Ru, Ag, and In in normal and, except for zinc, in tumor-bearing mice was simultaneously detected. Most elements were distributed in about the same manner in the skin and liver of animals in both groups. The distribution of Rb, Ga, V, Cr, Tc, and In showed little or no significant differences between the two study groups. The distribution of Na, Mn, Fe, Ag, Sc, and Co showed significant differences between normal and tumor-bearing mice. In the blood, spleen, and kidney of the normal mice, there was good absorption of Na, Mn, Fe, Ag, Co, and Zn. In the heart, these elements were well absorbed, except for Na and Mn.  相似文献   

5.
The radioactive multitracer technique was applied to the simultaneous determination of the uptake of 17 trace elements (Be, Na, Sc, V, Cr, Mn, Fe, Co, Zn, As, Se, Rb, Sr, Y, Zr, Nb, and Ru) in the liver, kidney, and blood of hypercholesterolemic model mice. The uptakes of Be, Sc, V, Cr, Fe, As, Rb, Y, Zr, Nb, and Ru in liver increased with an increasing feeding period of a cholesterol-rich diet, whereas the uptakes of Zn and Se decreased. Feeding of the diet resulted in a marked increase in serum total cholesterol, triglycerides, and low-density lipoprotein cholesterol. The metabolism of trace elements between cholesterolemic and normal mice was compared with respect to their serum cholesterol levels. A significant positive correlation was found between the concentration of serum triglycerides and liver uptakes of Cr, Fe, and As and a negative correlation for the uptake of Zn. A significant positive correlation was found between the concentrations of serum high- and low-density lipoprotein cholesterols and kidney uptakes of Cr and Rb. A negative correlation was found between the uptake of Be in the blood and the concentration of serum triglycerides. These results suggest that cholesterolemia have some specific effects on the metabolism of some elements.  相似文献   

6.
La Paz Bay and La Paz Lagoon are water bodies of the Gulf of California that are influenced by waste water discharges from the City of La Paz and from activities of the phosphorite mining company “Rofomex”. Because seaweeds concentrate elements from the water and are used as effective indicators of contamination by metals, we investigated their usefulness in this region. Concentrations of certain major elements (Ca, Fe, K and Na) and trace elements (As, Ba, Co, Cr, Cs, Hf, Rb, Sb, Sc, Se, Sr, Ta, Th, U, Zn and Zr) were determined in 12 species of seaweeds from La Paz Bay and La Paz Lagoon using instrumental neutron activation analysis. The contents of trace elements of environmental importance (As, Co, Cr, Fe, Sb, Se and Zn) in all studied samples are within the range of typical levels for a pristine environment not subjected to anthropogenic impact. Somewhat higher concentrations of Cr (81mg kg−1), Hf (4mg kg−1), Rb (48mg kg−1), Sc (6.3mg kg−1), Ta (0.95mg kg−1), Th (6.8mg kg−1), U (33mg kg−1) and Zn (90mg kg−1) were found in the green seaweed species Ulva (formerly Enteromorpha) intestinalis, whereas such elements as As (77mg kg−1), Sb (1.4mg kg−1) and Se (1.8mg kg−1) were mainly concentrated in the species Sargassum sinicola, Codium cuneatum and Padina mexicana respectively. Because of their higher abundance and heterogeneity in elemental composition the seaweeds species Ulva intestinalis and Caulerpa sertularioides seem to be more suitable for further biomonitoring of heavy metal pollution of the coastal waters in this zone.  相似文献   

7.
Trace elements are closely associated with the normal functioning of the brain. Therefore, it is important to determine how trace elements enter, accumulate, and are retained in the brain. Using the multitracer technique, which allows simultaneous tracing of many elements and comparison of their behavior under identical experimental conditions, we examined the influence of different administration methods, i.e., intravenous (IV), intraperitoneal (IP), intramuscular (IM), subcutaneous (SC), intracutaneous (IC), intranasal (IN), peroral (PO), and percutaneous (PC) administration, on the uptake of trace elements. A multitracer solution containing 16 radionuclides (i.e., 7Be, 46Sc, 48V, 51Cr, 54Mn, 59Fe, 56Co, 65Zn, 74As, 75Se, 83Rb, 85Sr, 88Y, 88Zr, 95mTc, and 103Ru) was used. The results indicated that the 83Rb brain uptake rate with intranasal administration was approximately twice those obtained with the other administration methods. This result indicated that a portion of Rb was delivered into the brain circumventing the blood circulation and that delivery could be accomplished mainly by olfactory transport. Multitracer screening of trace element delivery revealed differences in brain uptake pathways among administration methods.  相似文献   

8.
The trace element composition of the subsurface (roots and rhizomes), overground (leaves and stems), and reproductive (bean valves) organs of Glycyrrhiza uralensis Fisch. was determined by synchrotron radiation X-ray fluorescence analysis (SRXFA). Concentrations of Ti, Cr, Mn, Fe, Co, Ni, Cu, Zn, As, Se, Br, Rb, Sr, Y, Zr, Nb, Mo, Hg, Pb, Bi, Th, and U were measured. The data obtained were used to estimate the distribution of some elements in samples of various organs of licorice. Glycyrrhiza uralensis is an accumulator of Fe, Mn, Cu, and Co.  相似文献   

9.
We investigated the uptake of inorganic elements (Be, Na, Mg, K, Ca, Sc, Mn, Co, Zn, Se, Rb, Sr, Y, Zr, Ce, Pm, Gd, and Hf) and the effect of Ca on their uptake in carrots (Daucus carota cv. U.S. harumakigosun) by the radioactive multitracer technique. The experimental results suggested that Na, Mg, K, and Rb competed for the functional groups outside the cells in roots with Ca but not for the transporter-binding sites on the plasma membrrane of the root cortex cells. In contrast, Y, Ce, Pm, and Gd competed with Ca for the transporters on the plasma membrane. The selectivity, which was defined as the value obtained by dividing the concentration ratio of an elemental pair, K/Na, Rb/Na, Be/Sr, and Mg/Sr, in the presence of 0.2 and 2 ppm Ca by that of the corresponding elemental pair in the absence of Ca in the solution was estimated. The selectivity of K and Rb in roots was increased in the presence of Ca. The selectivity of Be in roots was not affected, whereas the selectivity of Mg was increased by Ca. These observations suggest that the presence of Ca in the uptake solution enhances the selectivity in the uptake of metabolically important elements against unwanted elements.  相似文献   

10.
INAA has been used for the determination of Na, Mg, Al, Cl, K, Sc, Cr, Mn, Fe, Co, Cu, Zn, As, Se, Br, Rb, Sr, Mo, and W in grains of rice, wheat, and barley, which were collected from different plant fields in Iraq. Samples and standards were irradiated in the IRT-5000 reactor, at neutron fluxes of 2 × 1013 cm−2·s−1 and 3.2 × 1011 cm−2·s−1. Interferences of photopeaks with each other were considered, and reaction interferences were calculated and determined experimentally. Accuracy of our method was assessed by the analysis of IAEA standards Wheat Flour and Bovine liver. A good agreement has been achieved between the present results and recommended values. The precision and detection limit were determined for all elements in all types of grain.  相似文献   

11.
Influence of La3+ on the accumulation of trace elements (75Se, 56Co, 83Rb, 48V, 95mTc, and 67Ga) in chloroplasts of cucumber seedling leaves was studied by a radioactive multitracer technique. At the same time, chloroplast contents of different concentrations of La3+ treatment were calculated. It was observed that chloroplast contents peaked at 0.02 mM La3+ treatment and that the uptake and distribution of these trace elements in chloroplasts of cucumber seedling leaves are different under different La3+ treatments. With the increase of lanthanum concentrations from 0.002 to 2 mM, the uptake percentages of 75Se, 56Co, and 83Rb presented an obvious increase and then sharply decreased in contrast to the nonlanthanum treatment, whereas there appeared a sharp decrease and then restored control level in the uptake of 48V. The other two trace elements, namely 95mTc and 67Ga, were accumulated only in the presence of 0.02 mM La3+. The results indicate that lanthanum treatments to growing the cucumber lead to the change of trace element uptake in the chloroplasts of leaves, which suggest that lanthanum might influence the accumulation of trace elements in chloroplasts of cucumber seedling leaves by regulation of various ion transport mechanisms, thus affecting the photosystem of leaves.  相似文献   

12.
The structures and electronic properties of the triatomic molecules containing Al, P, X atoms (X = B, Al, Ga; C, Si, Ge; N, P, As; O, S and Se) and their anions are investigated at the B3LYP/cc-PVTZ and the B3LYP/aug-cc-PVTZ levels. The results show that the most stable structures of the anions are AlXP (X = B, C, N) and PAlX (X = S, Se), while for the neutral molecules, the most stable structures are PXAl (X = C, N and O). The order of the VDEs of the anions molecules and the AEAs of the neutral species are C < N < O < Si ≈ Ge < P ≈ As < Al = Ga < B < S ≈ Se and C < O < N < Si ≈ Ge < P ≈ As < B < Al ≈ Ga < S ≈ Se, respectively.  相似文献   

13.
The uptake and distribution of eight metallic elements were examined in wheat seedlings for a period of 12 d with a radioactive multitracer technique. The radioactive nuclides of the seedlings were simultaneously determined by γ-ray spectrometry. All of the elements studied were taken up by the wheat seedlings and mainly accumulated in the roots. Only some elements were transported to shoots and leaves of the seedlings or bound to leaf proteins, and two elements were transported into the chloroplast. Uptake of most elements reached a maximum on the fifth or the eighth day and then gradually decreased afterward. In the cases of 95mTc and 72Se, the uptake increased continuously within 12 d without the peak uptake. The change of elemental concentrations was dependent on uptake and excretion rates. The dynamics of metal elements taken up by the wheat seedlings and their distribution in roots, shoots, and leaves were different for each element, suggesting that it may depend on the characteristics of the elements.  相似文献   

14.
The concentrations of 55 elements in the millipede, Oxidus gracilis, soil and plant in the habitat were examined using inductively coupled plasma atomic emission spectrometry (ICP-AES) and inductively coupled plasma mass spectrometry (ICP-MS). In all the millipedes, Ca concentration derived from calcium carbonate in the exoskeleton was the highest at average 94 μ/mg-weight. The other major elements were the following: Mg, K, Na, Zn, Fe, Al, Cu, Sr, Ba, Mn and Ti (> 1 ng/mg-body weight), whereas Se, Mo, Ag, Cd, Co, Li and Ce etc. were in trace levels. Interestingly, the various 15 elements such as Ca, Na, Zn, Al, Ba, Ga, Ag, Cd, Co and Y in environmental habitats were well reflected in the body of the millipede. Although the heavy metal contents, in the order of Cu>Pb>Cd, were similar to those of other invertebrates, Cu in the millipede was remarkably high concentration. Zn was maintained in a range of 72–394 ng/mg-weight as essential element in the body and no difference was found in the sexes. The C1 chondrite normalization pattern for lanthanoid series elements in the millipede, soil and plant indicated that the environmental habitats were well protected from pollution. These characteristics of internal elements and metal accumulation in the millipede or relation to their habitats would be useful information for the environmental pollution studies.  相似文献   

15.
In this work, synchrotron radiation total reflection X-ray fluorescence spectrometry (SRTXRF) was used to determine trace elements in eight hypoglycemiant plants (Trigonella foenum graecum, Panax ginseng, Pfaffia paniculata, Myrcia speciosa, Zea mays, Harpagophytum procumbens, Syzygium jambolona, and Bauhinia forficate). The elements P, K, Ca, Ti, Mn, Fe, Cu, Zn, Rb, and Sr were detected in all medicinal plants investigated, whereas Si, S, Sc, V, Cr, Co, Ni, Se, Nb, Mo, Sn, Sb, Ba, Hg, and Pb were detected only in some of the samples. The concentration of elements in hypoglycemiant plants varied from 0.15 μg/g of Co to 3.0×104 μg/g of K and the mean of experimental limit of detection for these elements were 0.14 and 3.6 μg/g, respectively.  相似文献   

16.
Interaction of elements in the course of element uptake by carrot (Daucas carota cv. U.S. harumakigosun) exerted by the addition of elements, such as Rb, Zn, and Al, was investigated. For the purpose of precise evaluation of uptake behavior, the simultaneous determination of absorption of Na, Be, Sr, Mn, Co, Zn, Ce, Pm, and Gd was conducted by the multitracer technique. For root uptakes, Al exhibited its influence on the uptake of essential elements and on the uptake of toxic or unbeneficial ones, presumably as a result of the large electric valency that caused cell membrane disintegrity. On the other hand, Zn as a divalent cation only affected the uptake of essential and beneficial elements. Rubidium, which is a monovalent cation, did not exhibit any effect on the uptake of other ions. Concerning shoot uptakes, inhibition by Zn and Al, but not by Rb, was observed for the uptake of Sr, Mn, Co, and Zn. From the present investigation, it is suggested that there exists an interaction between added ions and the elements taken into plants and that the degree of interaction increases in the increasing order of ionic valency: M+ (Rb), M2+ (Zn), and M3+ (Al).  相似文献   

17.
Although various proteins and some electrolytes have been measured in human saliva, little systematic data about the major and minor elemental components of this body fluid have been obtained. In order to obtain such data, concentrations of C, Na, P, Cl, K, Ca, Sc, Cr, Fe, Co, Zn, Se, Br, Rb, Sb, I, and Cs in human parotid saliva were measured by instrumental nuclear methods. The data obtained confirmed the relative lack of Zn in saliva of patients with hypogeusia (decreased taste acuity) and suggested that concentrations of Na, Cl, Br, and Ca followed the order: normals > hypogeusia > hyposmia (decreased smell acuity). To compare concentrations of elements in saliva with those in blood and urine, absolute concentrations were normalized to that of Na through the use of a concept called an enrichment factor. On this basis, parotid saliva is relatively depleted in Se, Zn, and Fe and enriched for most other elements relative to blood plasma indicating that the fluid is not simply a transudate of blood plasma. Using this same technique, saliva composition was found more similar to urine than blood plasma, being relatively depleted in Se, Cs, and Co, being enriched in I, Br, and Cr and having about the same relative concentrations of P, Cl, Zn, Fe, Ca, K, and Rb. As the total body concentrations of many of the enriched elements in saliva are extremely small, their enrichment in saliva suggests special roles for these elements in the oral cavity. Because of its accessibility, ease of collection, and interaction with some body constituents, saliva represents a useful, albeit neglected, tool in the diagnosis of some physiological and pathological changes in body function and in understanding important aspects of trace metal metabolism.  相似文献   

18.
19.
Nitrogen Translocation in Wheat Plants Under Soil Water Deficit   总被引:2,自引:0,他引:2  
Accumulation and translocation of nitrogen (N) in the vegetative organs and grains of winter wheat (Triticum aestivum L.) are important processes in determining yield and quality. The present study was conducted to compare the effects of water deficit and cultivars (cv. Lumai 21 and Jinan 17) on N translocation from vegetative organs to grains in a mobile rain-shelter using 15N-labeled ammonium sulfate fertilizer. The N translocation amounts (defined as the difference between the N amount at anthesis and the N amount at maturity for a vegetative organ) in leaves were greatest for the two cultivars, followed by glumes, stems, and sheaths, respectively. The N translocation ratio (defined as the ratio of the translocation amount to N amount at anthesis) in total above-ground parts were greater for Lumai 21 (0.65 g g−1 DW) than for Jinan 17 (0.60 g g−1 DW), and Lumai 21 plants had a higher N translocation ratio for the N derived from fertilizers. The N contribution (defined as the ratio of the translocation amount to grain N amount) of total vegetative parts aboveground to grain N ranged from 0.50 to 0.77 g g−1 DW, and that of the leaf was the greatest. The results showed that water deficit remarkably increased the N translocation ratio derived from soil and the contributions of N in various vegetative organs to grain N. It is suggested that water deficit would weaken the availability of fertilizer N but enhance the remobilization of prestored N to the grains.  相似文献   

20.
The selective absorption coefficient, which is a parameter of an uptake model of radionuclides by plants, was determined for various radionuclides by a multitracer technique. Komatsuna, Brassica rapa var. perviridis, was hydroponically cultivated in a nutrient solution containing a multitracer for 1 day. Nutrient concentration dependence of the selective absorption coefficient of various elements from Be to Re was obtained separately for leaves and roots. The selective absorption coefficients of these elements were, in general, found to decrease with an increase in the concentration of nutrient solutions. Regression equations of the power function for the selective absorption coefficients and the concentration of nutrient solutions were obtained for the leaves and roots. The effects of photon flux and growth stage of plants on the selective absorption coefficients were also studied. It was found that the photon flux influenced the accumulation of radionuclides in the roots but had no significant effect on the selective absorption coefficients for the leaves in 1-day cultivation with the multitracer. The selective absorption coefficients of Mn and Zn in the leaves of the plants at the development stage were higher than those at the maturation stage. For the other elements, no significant effects of the growth stage on the selective absorption coefficients were observed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号