首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Non-dividing mouse embryo fibroblasts which grew to a confluent cell density on one side of an ultra-thin filter did not inhibit the active multiplication of the same type of cells growing at low cell density on the other side of the filter directly opposite the confluent side. The close proximity of the cells across the filter was not sufficient to cause inhibition of cell division. The phenomenon of “contact” or “density dependent” inhibition of cell division is therefore probably not mediated by a cellular product which remains concentrated near the cell surface. The degree of contact inhibition of cell division was correlated with the local cell density on the same side of the filter. This relationship was found to be influenced strongly by the surface on which the cells were growing.  相似文献   

2.
The term “contact inhibition of cell division” was borrowed from “contact inhibition of cell movement.” We prefer the term “postconfluence inhibition of cell division” as being more operational and less mechanistically biased; it is operationally defined as a pronounced depression of the mitotic rate in a postconfluent culture which displays a stationary density despite periodic nutrient renewal, the inhibition being locally reversibly by removal of the adjacent cells. The mechanism of postconfluence inhibition is of considerable interest because of the inverse correlation between postconfluence inhibition and the tumorigenicity of a number of cell lines. Several hypotheses, involving direct cell-to-cell contacts or locally restricted diffusion gradiens, could explain postconfluence inhibition. With the goal of discriminating among these hypotheses, time-lapse films were taken of carefully regulated, perfused cultures of 3T3 mouse cells, in which the transition from rapid growth to the stationary phase was recorded. Measurements of cell-to-cell contact, local cell density, and generation times were made on an individual cell level and analyzed with the aid of a computer. We observed that all-around cell-cell contact or a high local cell density present throughout G1 often did not produce immediate inhibition of cell division. We conclude that either (i) simple visible cell-cell contacts or a high local cell density are not the direct cause of postconfluence inhibition of cell division, or (ii) their effects often do not inhibit cell division until after a delay of about one cell generation time. Such a delay may be partly responsible for the 50% overshoot past the stationary density that we observed in 3T3 cultures.  相似文献   

3.
The kinetics of cell division and movement in four epithelial-like cell lines, grown in continuously perfused culture medium, were studied by time-lapse cinemicrography. One line exhibited “contact regulation of cell division,” so that the rate of mitosis per cell decreased steadily as population density increased. In the other three lines mitosis was not controlled as a function of population density until the cells became very crowded. An explanation for this difference was sought in terms of the hypothesis that the rate of division depends on the area of the cell membrane. Cells of the contact-regulated line flattened uniformly on the substrate. Their motility was restrained by adhesion between their borders. As they crowded together, contact inhibition of cell overlap caused a steady decrease in average surface area per cell. All three of the non-controlled lines also had contact inhibition of overlap. Cells of two of them flattened on the substrate; but these cells had little mutual adhesion and were highly motile, so that they continually changed their shapes. The areas of their cell membranes were therefore not subject to a restraint that could control the rate of division. Cells of the fourth line remained rounded or only slightly flattened during culture growth, so that no change in cell membrane area occurred that could change the rate of division.  相似文献   

4.
Normal cells show contact inhibition of cell movement and proliferation, but this is lost following transformation. We found that Necl-5, originally identified as a poliovirus receptor and up-regulated in many cancer cells, enhances growth factor-induced cell movement and proliferation. We showed that when cells contact other cells, Necl-5 interacts in trans with nectin-3 and is removed by endocytosis from the cell surface, resulting in a reduction of cell movement and proliferation. We show here that up-regulation of the gene encoding Necl-5 by the oncogene V12-Ki-Ras causes enhanced cell movement and proliferation. Upon cell-cell contact, de novo synthesis of Necl-5 exceeds the rate of Necl-5 endocytosis, eventually resulting in a net increase in the amount of Necl-5 at the cell surface. In addition, expression of the gene encoding nectin-3 is markedly reduced in transformed cells. Thus, up-regulation of Necl-5 following transformation contributes to the loss of contact inhibition in transformed cells.  相似文献   

5.
Contact inhibition of cell movement was originally defined in the 1950s as a way of interpreting studies that were ethological and statistical in nature. Research done in succeeding decades provided a more detailed study of the initial contact and its consequences for the cell. The behavior called contact inhibition is characterized by the cessation of ruffling and forward movement in the lamellipodium of the cell making the contact. A new ruffling membrane then arises elsewhere on the cell perimeter. A comparison between the contact behavior described in the early literature and that of the nerve growth cone, described recently by Steketee and Tosney, suggests that filopodia mediate the sensing function in both cases. Since transformed cells have fewer filopodia than normal cells, the contact behavior may decline in direct response to the degraded function of filopodia. This new “filopodia focal signal transduction” hypothesis of contact inhibition elevates the filopodia sensing function and the cessation of lamellipodial advance to the highest importance as phenomena underlying the altered behavior of cancer cells. J. Cell. Physiol. 220: 574–575, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

6.
Intercellular communication of molecules between normal cells by tight junctions, and lack of this in some cancer cells (Loewenstein), can explain contact inhibition of cellular division in tissues. A general theory has been based on assuming the continual rise and fall (intrinsic oscillation) of a key substance x in each cell, with the period of the cell cycle. Periods are asynchronous in different cells, and x is exchanged between cells in contact by diffusion. A reduction in the resultant amplitude of fluctuation of x results, so that it does not reach the threshold xt required for division to ensue; hence contact inhibition.The mathematical model is defined in its simplest form, and the sets of differential equations for arrays of cells are solved, from the isolated cell to the cell in an infinite sheet. The relative probability of division, P, is computed by numerical analysis from the area of resultant curves of x that lies above the threshold xt. P depends on four dimensionless parameters, the order of coupling n (the number of cells directly communicating with a given cell), the total number of cells N in the aggregate, the communication constant K, and xt, as a fraction of the amplitude of the intrinsic oscillation. The degree of synchrony, measured by the coefficient of variation σ of the periods, is important. If σ < ± 4%, contact inhibition is much reduced. The theory predicts that a paradoxical “contact-facilitation” is possible for very small aggregates of cells. For a cell in an infinite sheet, the amplitude of oscillation of x is reduced approximately by the factor 1nK. For normal cells K is probably > 1, for cancer cells that lack communication, K is probably «< 1. However, two other basic causes for lack of regulation of tissue growth (cancer) could be excessive intrinsic oscillation of x, cf. xt, and partial or complete synchronization of groups of cells by some unknown mechanism.  相似文献   

7.
A hydrodynamic cell model is introduced to analyze the dynamic stability of the cell membrane after malignant transformation. The cell membrane is considered as a two-dimensional charged interface between intra- and extra-cellular fluids. Employing a first order stability analysis, conditions are established under which growth of surface fluctuations can occur (leading to microvilli formation or cell division). The system is unstable if the total surface tension, i.e. the pure surface tension plus the free energy of formation of the double layers, is negative. Following that criterion, cell division is promoted in cancer cells; moreover, as cancer cells are more fluid than normal cells, they will divide more rapidly. The model also predicts that microvilli (protrusions of the cell membrane) will have a diameter of the order of the dominant wavelengths of perturbation (0.1 - 1 mu) which supports the view that such protrusions are consequences of amplified cell surface fluctuations.  相似文献   

8.
Hybrid cell lines have been prepared between 3T3, a line highly sensitive to contact inhibition of division, and cl 1-D, an L cell derivative which is not sensitive. A number of hybrid clones isolated were found to be quite sensitive, indicating that in this respect the 3T3 behavior is the more fully expressed in the hybrid. On serial subculture, the hybrid lines gave rise to variants less sensitive to contact inhibition.  相似文献   

9.
Contact regulation of cell division in an epithelial-like cell line   总被引:6,自引:0,他引:6  
The rate of cell division in an epithelial-like cell line, 1S1, was examined by time-lapse cinemicrography. When precautions were taken to insure a sufficient nutrient supply, the number of mitoses per unit time in any given area of a confluent monolayer remained constant. This “contact regulation of cell division” resulted in a steadily decreasing frequency of mitosis per cell as the culture became crowded. With the decrease was associated a gradual change in cell shape, from maximally flattened to maximally compact, due to contact inhibition of the movement of cells across one another. When cells were removed along a line scraped on a dense culture, the cells at the edge of the scrape flattened, migrated into the vacant area, and subsequently increased their frequency of mitosis to that characteristic of non-confluent cells. Inhibition of mitosis caused by a limitation on the nutrient supply was also reversed at a line-scrape. These observations suggest that cell flattening promoted mitosis by causing the cell membrane to expand, thereby facilitating the uptake of nutrients. The cell membrane would thus function in the mechanism of contact regulation as a transducer, for converting the pressure of the surrounding cell population into a restraining force upon the metabolism of cell division.  相似文献   

10.
Like many voltage-sensitive ion pumps, cytochrome c oxidase is inhibited by zinc. Binding of zinc to the outside surface of Rhodobacter sphaeroides cytochrome c oxidase inhibits the enzyme with a K(I) of < or = 5 microm when the enzyme is reconstituted into phospholipid vesicles in the presence of a membrane potential. In the absence of a membrane potential and a pH gradient, millimolar concentrations of zinc are required to inhibit. This differential inhibition causes a dramatic increase in the respiratory control ratio from 6 to 40 for wild-type oxidase. The external zinc inhibition is removed by EDTA and is not competitive with cytochrome c binding but is competitive with protons. Only Cd(2+) of the many metals tested (Mg(2+), Mn(2+), Ca(2+), Ba(2+), Li(2+), Cs(2+), Hg(2+), Ni(2+), Co(2+), Cu(2+) Tb(3+), Tm(3+)) showed inhibitory effects similar to Zn(2+). Proton pumping is slower and less efficient with zinc. The results suggest that zinc inhibits proton movement through a proton exit path, which can allow proton back-leak at high membrane potentials. The physiological and mechanistic significance of proton movement in the exit pathway and its blockage by zinc is discussed in terms of regulation of the efficiency of energy transduction.  相似文献   

11.
Freeze fracture ultrastructure studies have shown that contact inhibited 3T3 cells contain aggregated intramembranous particles (IMP) while transformed 3T3 cells have randomly distributed IMP. The results of this study show that the aggregation of IMP in 3T3 cells is primarily related to the degree of cell contact and not significantly affected by inhibition of cell movement. Cell cycle studies do, however, show a transient disaggregation of IMP during the mitotic phase of the cell cycle. These observations are interpreted to suggest that changes in membrane structure which occur during mitosis or following cell-to-cell contact may be associated with changes in membrane fluidity and the activity of membrane enzymes that appear to be critical for control of cell growth and cell division.  相似文献   

12.
Cell division, ciliary regeneration and cyclic AMP in a unicellular system   总被引:3,自引:0,他引:3  
The average speed of nuclear translocation of 3T3 cells, recorded in a time-lapse film of a perfused culture, was negatively correlated with the number of contacting cells, and, to a lesser degree, with the amount of a cell's perimeter in contact with other cells. When a cell was in contact with five or more other cells, its speed was reduced by 50%, on the average, although the variation in individual cell speed was considerable at each level of contact. A partial correlation analysis showed that any extracellular soluble factors governed by the local cell density had little or no effect on speed, relative to the prominent effect of the number of cell-cell contacts, and hence that 3T3 cells display true contact inhibition of speed. This confirms the original demonstration by Abercrombie and Heaysman (1952), who studied chick embryo heart fibrpolasts. In our study, the relationships between average speed and age of the culture was such that a possible independent contribution of a time-associated factor other than contact to the diminution in average speed, although not necessary to account for the data, could not be excluded. The same intercellular contacts found to inhibit speed in this study were previously reported to cause no immediate prolongation of individual cell generation times, despite the fact that the filmed culture was undergoing so-called “contact” inhibition of cell division. In the present study, moreover, no correlation was observed between the average speeds of individual cells and their generation times. Hence, postconfluence inhibition of cell division and contact inhibition of speed of cell movement seem to be independent phenomena.  相似文献   

13.
Following in vitro infection of human cell cultures with simian virus 40, karyotypic analyses were performed on the earliest serial culture in which cells were released from contact inhibition of division. In these cultures of diploid fibroblast-like cells, normal karyotypes were found in excess of the statistical expectation for the number of background dividing cells. Thus, loss of contact inhibition of cell division occurs prior to the alteration of chromosome morphology. These events are two of the prime alterations in the series of steps comprising transformation by this virus. The chromosomal changes which were present represent the first cytological alteration detectable. Their distribution in the human karyotype was examined, but was found to have no relation to any specific chromosome or chromosome group.  相似文献   

14.
Indole is a bacterial signalling molecule that blocks E. coli cell division at concentrations of 3-5mM. We have shown that indole is a proton ionophore and that this activity is key to the inhibition of division. By reducing the electrochemical potential across the cytoplasmic membrane of E. coli, indole deactivates MinCD oscillation and prevents formation of the FtsZ ring that is a prerequisite for division. This is the first example of a natural ionophore regulating a key biological process. Our findings have implications for our understanding of membrane biology, bacterial cell cycle control and potentially for the design of antibiotics that target the cell membrane.  相似文献   

15.
A theoretical model dealing with endocytosis, exocytosis and caveolae invagination, describing plasmalemma homeostasis during cell growth and division, is proposed. It considers transmembrane pressure, membrane tension and mechanosensitivity of membrane processes. Membrane hydraulic conductivity and the flux of transmembrane nonvesicular transport are taken into account. The developed mathematical analysis operates with a formulated set of constitutive equations describing the mechanical state and kinetics of changes in an open dynamic membrane system. The standard version of a model with adjusted parameters was implemented, and predictions including a discussion on the effect of possible parameter modifications were presented. Computer simulations indicate big changes in the magnitude of membrane tension and elasticity, and in the number of membrane buddings in young cells and during mitosis. They also show the extent of cell growth inhibition resulting from a decrease in transmembrane transport or an increase in the exerted difference in osmotic pressure. Moreover, the simulations reveal that exocytosis regulated during mitosis may not be as important for cell growth, as sometimes presumed. Finally, practical application and possible extension of the model are discussed.  相似文献   

16.
Two separate control processes govern the cell cycle of rat C6 glioma cells. In subconfluent cultures growth inhibition is caused by cell contact interactions and the cell cycle is regulated primarily by changes in the duration of S phase. During advanced multilayering, medium depletion becomes the primary mechanism of growth inhibition and causes a pronounced G1 accumulation. Contact modulation acts by altering the velocity with which cells progress through the cell cycle, while depletion causes cycle arrest.  相似文献   

17.
The social behavior of 3T3 cells and their polynoma virus-transformed derivative (Py3T3 cells) was examined by time-lapse cinemicrography in order to determine what factors are responsible for the marked differences in the patterns formed by the two cell lines in culture. Contrary to expectations, both cell types have been found to exhibit contact inhibition of cell locomotion. Therefore, the tendency of 3T3 cells to form monolayers and of Py3T3 cells to form crisscrossed multilayers cannot be explained on the basis of the presence versus the absence of contact inhibition. Morevover, with the exception of cell division control, the social behavior of the two cell types is qualitively similar. Both exhibit cell underlapping and, after contact between lamelliopodia, both show inhibition of locomotory activity and adhesion formation. Neither cell type was observed to migrate over the surface of another cell. The two cell types do show quantitative differences in the frequency of underlapping, the frequency with which contact results in inhibition of locomotion, and the proportion of the cell margin that adheres to the substratum. The increased frequency pf Py3T3 underlapping is correlated with the reduced frequency of substratum adhesions, which in turn favors underlapping. On the basis of these observations, it is concluded that the differences in culture patterns are the result of differences in the shapes of the individual cells, such that underlapping, and hence crisscrossing, is favored in Py3T3 cell interactions and discouraged in 3T3 cells.  相似文献   

18.
The relationship between protein synthesis and processes of cell division was studied by using synchronized cells of Bacillus subtilis 168. The addition of chloramphenicol at the beginning of synchronous growth prevented septum formation and cell division, suggesting the requirement of protein synthesis for the processes of cell division. Experiments in which the drug was added to the cells at different cell ages showed that the protein synthesis required for the initiation of septum formation was completed at about 15 min and that the protein synthesis required for cell division was completed at about 45 min. By interpreting the result from the concept of the transition point for protein synthesis, it was suggested that the processes of cell division in B. subtilis require at least two kinds of protein molecules which are synthesized at distinct stages in the cell cycle. This was supported by the result of an experiment in which starvation and the readdition of a required amino acid to exponentially growing cells induced two steps of synchronous cell division. Further, the two transition points are in agreement with the estimations obtained by residual division after the inhibition of protein synthesis in asynchronous cells. The relationship of the timing between the completion of chromosome replication and the two transition points was also studied.  相似文献   

19.
The pattern of division of polarized 8-cell blastomeres with respect to the axis of cell polarity has been compared (i) for cells dividing alone with cells dividing in pairs, and (ii) for early and late dividing cells within a pair. Cell interactions do not seem to influence significantly the overall pattern of division within the population. The only significant difference found was that the second dividing cell in a pair tended to divide in the same way as its earlier dividing companion slightly more frequently than expected. These results suggest that cell interactions immediately prior to and during division do not influence strongly the orientation and position of the division plane. In contrast, interactions between the cells within an intact early 8-cell embryo, which is subsequently disaggregated to singletons or pairs, do influence the type of progeny generated at division to the 16-cell stage, and seem to do so via an effect on the size of the microvillous region generated at the cell apex.  相似文献   

20.
The relationship between physiochemical surface parameters and adhesion of bacterial cells to negatively charged polystyrene was studied. Cell surface hydrophobicity and electrokinetic potential were determined by contact angle measurement and electrophoresis, respectively. Both parameters influence cell adhesion. The effect of the electrokinetic potential increases with decreasing hydrophobicity. Cell surface characteristics determining adhesion are influenced by growth conditions. At high growth rates, bacterial cells tend to become more hydrophobic. This fact can be of ecological significance for controlling the spread of bacteria throughout the environment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号