首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
梁迎春  程龙  叶棋浓 《生物技术通讯》2012,23(3):436-439,460
肿瘤是严重影响人类身体健康的重大疾病之一,肿瘤的发生发展是一个复杂的涉及到众多基因的过程,肿瘤的基因治疗也已经成为肿瘤治疗的研究热点之一。目前,肿瘤基因治疗的策略主要包括以下几个方面:基因沉默治疗、抑癌基因治疗、免疫基因治疗、自杀基因疗法、抑制肿瘤血管生成基因治疗、肿瘤多药耐药基因治疗、抗端粒酶疗法和多基因联合疗法等。我们简要地对上述策略及相关研究进展进行综述。  相似文献   

2.
RNAi是由双链RNA(dsRNA)所诱发的转录后水平上的基因沉默.由于对靶基因沉默作用的高度特异性和高效性,因此近年来用于肿瘤性疾病、感染性疾病、遗传性疾病等疾病的基因治疗研究,特别是在抗病毒领域的研究更是成为其应用热点之一.虽然目前RNAi已经较为广泛地应用于动物病毒及各种疾病病毒的基因治疗研究中,但其在应用过程中还有许多亟待解决的问题.本文就RNAi及其在抗病毒领域的应用研究和其存在的问题展开综述.  相似文献   

3.
本文概述了当前肿瘤基因治疗研究中存在的一些主要问题,如绝大多数治疗方案中目的基因只有一个,肿瘤基因治疗缺乏靶向性,基因转移载体的效率、安全性及容量等问题。讨论了解决这些问题的主要途径,即肿瘤多基因联合治疗、直接体内途径基因治疗与靶向基因治疗、基因转移载体的改造。  相似文献   

4.
RNA干扰技术在基因治疗中的应用进展   总被引:1,自引:0,他引:1  
RNA干扰(RNA interference,RNAi)是一种双链RNA分子在mRNA水平上关闭相应序列基因的表达或使其沉默的过程,在基因治疗方面有着无可比拟的优势,已成功的应用于肿瘤、病毒感染、遗传性疾病及神经系统疾病等重大疾病的治疗.本文将主要介绍siRNA基因治疗的导入方法与途径,以及在不同疾病中,RNAi技术进行基因治疗的应用.  相似文献   

5.
基因治疗是将外源性遗传物质通过多种方法转移到靶细胞中,用来治疗特定疾病。基因治疗对某些单基因遗传病有一次治愈的可能,或将成为未来治疗人类疾病的重要手段。但基因治疗仍存在诸多挑战,如长期的安全性和疗效数据、可及性以及监管等。从基因治疗的基本概念和历史出发,结合基因治疗产品的开发现状和未来,进行讨论。  相似文献   

6.
基因治疗是将外源性遗传物质通过多种方法转移到靶细胞中,用来治疗特定疾病。基因治疗对某些单基因遗传病有一次治愈的可能,或将成为未来治疗人类疾病的重要手段。但基因治疗仍存在诸多挑战,如长期的安全性和疗效数据、可及性以及监管等。从基因治疗的基本概念和历史出发,结合基因治疗产品的开发现状和未来,进行讨论。  相似文献   

7.
当前肿瘤基因治疗中存在的主要问题及其解决途径   总被引:1,自引:0,他引:1  
洪琦  夏胜 《生物工程进展》2000,20(4):72-74,71
本文概述了当前肿瘤基因治疗研究中存在的一些主要问题,如绝大多数治疗方案中目的基因只有一个,肿瘤基因治疗缺乏靶向性,基因转移载体的效率、安全性及容量等问题。讨论了解决这些问题的主要途径,即肿瘤多基因联合治疗、直接体内途径治疗与靶向基因治疗、基因转移载体的改造。  相似文献   

8.
薛京伦 《遗传》1990,12(4):45-48
基因治疗是人类征服遗传性疾病最有希望的手段。基因治疗是指通过遗传操作直接在基因水平上治疗由基因突变所引起的遗传性疾病。进行基因治疗有两个基本策略:(1)原位修复有缺陷的基因;(2)将有功能的正常基因转移到疾病细胞或个体基因组的某一部位上以替代缺陷基因发挥作用。目前条件下,后者是比较容易着手的一种基因治疗策略,也称为基因替代疗法。在早期进行基因治疗尝试时,最适合的对象应当是一些产物量无需精确调节,同时又经常开放的基因。首选对象有(1)次黄嘌呤-鸟嘌呤磷酸核糖转移酶(HPRT),由于这种酶的缺乏,在人类中可引起自毁容  相似文献   

9.
CRISPR/Cas9 (clustered regularly interspaced short palindromic repeats/CRISPR associated protein 9)系统具有高效、精确、操作难度较低等特点,是目前应用最为广泛的基因编辑工具。CRISPR/Cas9在构建模式动物突变体研究基因功能和构建人类疾病模型中有大量使用,但是由于相关伦理限制,在人类胚胎中进行基因编辑来探索治疗性胚胎编辑和研究人早期胚胎发育机制的研究发展较慢。人类胚胎发育机制与小鼠等模式动物的早期胚胎发育机制存在较大差异,过往在模式动物上研究的早期胚胎发育机制要在人类胚胎水平进行验证,对人类胚胎利用基因编辑工具进行直接研究越发必要,探索人类早期胚胎发育机制有助于相关发育疾病的研究与治疗。胚胎治疗性基因编辑可以实现对遗传疾病的彻底阻断,目前还处于初步探索时期,但是主要存在潜在脱靶和编辑后形成嵌合体两方面问题。相较而言,出生后个体水平的基因治疗目前发展较为快速,对遗传疾病和艾滋病等血液疾病有应用价值。现对CRISPR/Cas9近年来应用于人类胚胎编辑和基因治疗的内容进行了综述。  相似文献   

10.
多形性脑胶质母细胞瘤化学及基因治疗的研究进展   总被引:1,自引:0,他引:1  
多形性脑胶质母细胞瘤是最常见的颅内肿瘤之一且预后差。即使积极采用手术,放疗及化疗的联合治疗方法,中位生存期小于1年。传统的恶性胶质瘤的化学治疗主要是应用细胞周期性或非周期性细胞毒性药物,直接杀死肿瘤细胞。随着人们对胶质瘤细胞生物学行为的深入研究,近年来新的细胞毒性药物(如替莫唑胺)不断开发出来;替莫唑胺及亚硝基脲类药物耐药性得到了部分解决以及非细胞毒性药物如酪氨酸激酶抑制剂及细胞间信号传导通路抑制剂在临床中的应用。此外,在导入自杀基因、修复或导入抑癌基因、肿瘤免疫基因治疗、血管生成抑制基因治疗、对流增强传送运输系统等基因治疗策略方面亦展开了广泛的临床研究。使得化学治疗及基因治疗成为GBM手术及放疗的有益补充。  相似文献   

11.
Gene therapy, recently frequently investigated, is an alternative treatment method that introduces therapeutic genes into a cancer cell or tissue to cause cell death or slow down the growth of the cancer. This treatment has various strategies such as therapeutic gene activation or silencing of unwanted or defective genes; therefore a wide variety of genes and viral or nonviral vectors are being used in studies. Gene therapy strategies in cancer can be classified as inhibition of oncogene activation, activation of tumor suppressor gene, immunotherapy, suicide gene therapy and antiangiogenic gene therapy. In this review, we explain gene therapy, gene therapy strategies in cancer, approved gene medicines for cancer treatment and future of gene therapy in cancer. Today gene therapy has not yet reached the level of replacing conventional therapies. However, with a better understanding of the mechanism of cancer to determine the right treatment and target, in the future gene therapy, used as monotherapy or in combination with another existing treatment options, is likely to be used as a new medical procedure that will make cancer a controllable disease.  相似文献   

12.
Gene therapy involves the introduction of normal, healthy genes into cells to correct the underlying cause of a wide variety of inherited and acquired diseases. Future progress in developing effective clinical protocols involving gene therapy for the treatment of cellular dysfunction associated with disease may incorporate metabolic engineering. Metabolic engineering can be applied to gene therapy for the successful identification of disease genes; elucidation of disease pathways; development of safe and efficient gene-delivery systems; and regulation and control of gene expression. Cystic fibrosis, cancer, and diabetes are reviewed as examples of diseases where gene therapy approaches are being studied.  相似文献   

13.
Mice with alterations to specific endogenous genes can be produced by gene targeting in embryonic stem cells. The field has developed rapidly over the past decade, so that large numbers of mice with different gene deficiencies have been generated. Knockout mice provide an ideal opportunity to analyse the function of individual mammalian genes and to model a range of human inherited disorders. This powerful approach has also identified numerous examples of gene redundancy and has highlighted the need to consider metabolic differences between man and mouse in disease modelling. More sophisticated gene-targeting methods are now being used to introduce subtle gene alterations. In the future, more refined genetic analysis and genome, rather than individual gene, alterations will be achieved by incorporating site-specific recombination into targeting strategies. Gene targeting could also make a contribution to improved protocols for gene therapy.  相似文献   

14.
Therapeutic genes for cancer gene therapy   总被引:2,自引:0,他引:2  
Cancer still represents a disease of high incidence and is therefore one major target for gene therapy approaches. Gene therapy for cancer implies that ideally selective tumor cell killing or inhibition of tumor cell growth can be achieved using nucleic acids (DNA and RNA) as the therapeutic agent. Therefore, the majority of cancer gene therapy strategies introduce foreign genes into tumor cells which aim at the immunological recognition and destruction, the direct killing of the target cells or the interference with tumor growth. To achieve this goal for gene therapy of cancer, a broad variety of therapeutic genes are currently under investigation in preclinical and in clinical studies. These genes are of very different origin and of different mechanisms of action, such as human cytokine genes, genes coding for immunstimulatory molecules/antigens, genes encoding bacterial or viral prodrug-activating enzymes (suicide genes), tumor suppressor genes, or multidrug resistance genes.  相似文献   

15.
To date, almost 2600 gene therapy clinical trials have been completed, are ongoing or have been approved worldwide. Our database brings together global information on gene therapy clinical activity from trial databases, official agency sources, published literature, conference presentations and posters kindly provided to us by individual investigators or trial sponsors. This review presents our analysis of clinical trials that, to the best of our knowledge, have been or are being performed worldwide. As of our November 2017 update, we have entries on 2597 trials undertaken in 38 countries. We have analysed the geographical distribution of trials, the disease indications (or other reasons) for trials, the proportions to which different vector types are used, and the genes that have been transferred. Details of the analyses presented, and our searchable database are available via The Journal of Gene Medicine Gene Therapy Clinical Trials Worldwide website at: http://www.wiley.co.uk/genmed/clinical . We also provide an overview of the progress being made in gene therapy clinical trials around the world, and discuss key trends since the previous review, namely the use of chimeric antigen receptor T cells for the treatment of cancer and advancements in genome editing technologies, which have the potential to transform the field moving forward.  相似文献   

16.
Dendritic cell (DC) immunotherapy has shown significant promise in animal studies as a potential treatment for cancer. Its application in the clinic depends on the results of human trials. Here, we review the published clinical trials of cancer immunotherapy using exogenously antigen-exposed DCs. We begin with a short review of general properties and considerations in the design of such vaccines. We then review trials by disease type. Despite great efforts on the part of individual investigative groups, most trials to date have not yielded data from which firm conclusions can be drawn. The reasons for this include nonstandard DC preparation and vaccination protocols, use of different antigen preparations, variable means of immune assessment, and nonrigorous criteria for defining clinical response. While extensive animal studies have been conducted using DCs, optimal parameters in humans remain to be established. Unanswered questions include optimal cell dose, use of mature versus immature DCs for vaccination, optimal antigen preparation, optimal route, and optimal means of assessing immune response. It is critical that these questions be answered, as DC therapy is labor- and resource-intensive. Cooperation is needed on the part of the many investigators in the field to address these issues. If such cooperation is not forthcoming, the critical studies that will be required to make DC therapy a clinically and commercially viable enterprise will not take place, and this therapy, so promising in preclinical studies, will not be able to compete with the many other new approaches to cancer therapy presently in development. Trials published in print through June 2003 are included. We exclude single case reports, except where relevant, and trials with so many variables as to prevent interpretation about DC therapy effects.  相似文献   

17.
18.
The prelude to successful human somatic gene therapy, i.e. the efficient transfer and expression of a variety of human genes into target cells, has already been accomplished in several systems. Safe methods have been devised to do this using non-viral and viral vectors. Potentially therapeutic genes have been transferred into many accessible cell types, including hematopoietic cells, hepatocytes and cancer cells, in several different approaches to ex vivo gene therapy. Successful in vivo gene therapy requires improvements in tissuetargeting and new vector design, which are already being sought. Gene-transfer protocols have been approved for human use in inherited diseases, cancer and acquired disorders. Althouth the results of these trials to date have been somewhat disappointing, human somatic cell gene therapy promises to be an effective addition to the arsenal of approaches to the therapy of many human diseases in the 21st century if not sooner.  相似文献   

19.
Gene therapy is a novel approach for treating various congenital and acquired genetic disorders, including cancer, heart disease, and acquired immune deficiency syndrome. Amongst possible gene delivery systems, retroviral vector mediated gene transfer has been the most extensively studied and has been approved for use in over 40 current Phase I/II clinical trials for the treatment of various disorders, primarily cancers. Recent technological improvements include the optimization of vector production by concentration and lyophilization, resulting in high titers of vectors, as well as the large-scale production of vector-produced cells for the treatment of brain cancer. Present clinical protocols require specialized care centers with expertise in molecular biology and cell transplantation. Considerable effort is under way to develop retroviral vectors that can be both injected directly into the body and targeted to specific cell types within the body. Such vectors could be administered to patients by physicians in their offices. Successful development of this new technology would greatly expand the clinical potential of gene therapy.  相似文献   

20.
Gene expression patterns can reflect gene regulations in human tissues under normal or pathologic conditions. Gene expression profiling data from studies of primary human disease samples are particularly valuable since these studies often span many years in order to collect patient clinical information and achieve a large sample size. Disease-to-Gene Expression Mapper (DGEM) provides a beneficial community resource to access and analyze these data; it currently includes Affymetrix oligonucleotide array datasets for more than 40 human diseases and 1400 samples. The data are normalized to the same scale and stored in a relational database. A statistical-analysis pipeline was implemented to identify genes abnormally expressed in disease tissues or genes whose expressions are associated with clinical parameters such as cancer patient survival. Data-mining results can be queried through a web-based interface at http://dgem.dhcp.iupui.edu/. The query tool enables dynamic generation of graphs and tables that are further linked to major gene and pathway resources that connect the data to relevant biology, including Entrez Gene and Kyoto Encyclopedia of Genes and Genomes (KEGG). In summary, DGEM provides scientists and physicians a valuable tool to study disease mechanisms, to discover potential disease biomarkers for diagnosis and prognosis, and to identify novel gene targets for drug discovery. The source code is freely available for non-profit use, on request to the authors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号