首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The search for novel biologically active molecules has extended to the screening of organisms associated with less explored environments. In this sense, Oceans, which cover nearly the 67% of the globe, are interesting ecosystems characterized by a high biodiversity that is worth being explored. As such, marine microorganisms are highly interesting as promising sources of new bioactive compounds of potential value to humans. Some of these microorganisms are able to survive in extreme marine environments and, as a result, they produce complex molecules with unique biological interesting properties for a wide variety of industrial and biotechnological applications. Thus, different marine microorganisms (fungi, myxomycetes, bacteria, and microalgae) producing compounds with antioxidant, antibacterial, apoptotic, antitumoral and antiviral activities have been already isolated. This review compiles and discusses the discovery of bioactive molecules from marine microorganisms reported from 2018 onwards. Moreover, it highlights the huge potential of marine microorganisms for obtaining highly valuable bioactive compounds.  相似文献   

2.
Biologists and chemists of the world have been attracted towards marine natural products for the last five decades. Approximately 16,000 marine natural products have been isolated from marine organisms which have been reported in approximately 6,800 publications, proving marine microorganisms to be a invaluable source for the production of novel antibiotic, anti tumor, and anti inflammatory agents. The marine fungi particularly those associated with marine alga, sponge, invertebrates, and sediments appear to be a rich source for secondary metabolites, possessing Antibiotic, antiviral, antifungal and antiyeast activities. Besides, a few growth stimulant properties which may be useful in studies on wound healing, carcinogenic properties, and in the study of cancers are reported. Recent investigations on marine filamentous fungi looking for biologically active secondary metabolites indicate the tremendous potential of them as a source of new medicines. The present study reviews about some important bioactive metabolites reported from marine fungal strains which are anti bacterial, anti tumour and anti inflammatory in action. It highlights the chemistry and biological activity of the major bioactive alkaloids, polyketides, terpenoids, isoprenoid and non-isoprenoid compounds, quinones, isolated from marine fungi.  相似文献   

3.
Due to the unique environmental conditions and vast territory, marine habitat breeds more abundant biological resources than terrestrial environment. Massive marine biological species provide valuable resources for obtaining a large number of natural products with diverse structure and excellent activity. In recent years, new breakthroughs have been made in the application of marine natural products in drug development. In addition, the use of marine natural products to develop insecticides and other pesticide products has also been widely concerned. Targeting marine plants, animals, and microorganisms, we have collected information on marine natural products with insecticidal activity for nearly decade, including alkaloids, terpenes, flavonoids and phenols fatty acids, peptides, and proteins, et al. In addition, some active crude extracts are also included. This review describes the insecticidal activities of marine natural products and their broad applications for future research in agriculture and health.  相似文献   

4.
This review systematically data on the chemical structure and biological activity of metabolites of obligate and facultative marine actinobacteria, published from 2000 to 2007. We discuss some structural features of the five groups of metabolites related to macrolides and compounds containing lactone, quinone and diketopiperazine residues, cyclic peptides, alkaloids, and compounds of mixed biosynthesis. Survey shows a large chemical diversity of metabolites actinobacteria isolated from marine environment. It is shown that, along with metabolites, identical to previously isolated from terrestrial actinobacteria, marine actinobacteria synthesize unknown compounds not found in other natural sources, including micro organisms. Perhaps the biosynthesis of new chemotypes bioactive compounds in marine actinobacteria is one manifestation of chemical adaptation of microorganisms to environmental conditions at sea. Review stresses the importance of the chemical study of metabolites of marine actinobacteria. These studies are aimed at obtaining new data on marine microorganisms producers of biologically active compounds and chemical structure and biological activity of new low-molecular bioregulators of natural origin.  相似文献   

5.
Advances in the taxonomic characterization of microorganisms have accelerated the rate at which new producers of natural products can be understood in relation to known organisms. Yet for many reasons, chemical efforts to characterize new compounds from new microbes have not kept pace with taxonomic advances. That there exists an ever-widening gap between the biological versus chemical characterization of new microorganisms creates tremendous opportunity for the discovery of novel natural products through the calculated selection and study of organisms from unique, untapped, ecological niches. A systematics-guided bioprospecting, including the construction of high quality libraries of marine microbes and their crude extracts, investigation of bioactive compounds, and increasing the active compounds by precision engineering, has become an efficient approach to drive drug leads discovery. This review outlines the recent advances in these issues and shares our experiences on anti-infectious drug discovery and improvement of avermectins production as well.  相似文献   

6.
The biological resources of the oceans have been exploited since ancient human history, mainly by catching fish and harvesting algae. Research on natural products with special emphasis on marine animals and also algae during the last decades of the 20th century has revealed the importance of marine organisms as producers of substances useful for the treatment of human diseases. Though a large number of bioactive substances have been identified, some many years ago, only recently the first drugs from the oceans were approved. Quite astonishingly, the immense diversity of microbes in the marine environments and their almost untouched capacity to produce natural products and therefore the importance of microbes for marine biotechnology was realized on a broad basis by the scientific communities only recently. This has strengthened worldwide research activities dealing with the exploration of marine microorganisms for biotechnological applications, which comprise the production of bioactive compounds for pharmaceutical use, as well as the development of other valuable products, such as enzymes, nutraceuticals and cosmetics. While the focus in these fields was mainly on marine bacteria, also marine fungi now receive growing attention. Although culture-dependent studies continue to provide interesting new chemical structures with biological activities at a high rate and represent highly promising approaches for the search of new drugs, exploration and use of genomic and metagenomic resources are considered to further increase this potential. Many efforts are made for the sustainable exploration of marine microbial resources. Large culture collections specifically of marine bacteria and marine fungi are available. Compound libraries of marine natural products, even of highly purified substances, were established. The expectations into the commercial exploitation of marine microbial resources has given rise to numerous institutions worldwide, basic research facilities as well as companies. In Europe, recent activities have initiated a dynamic development in marine biotechnology, though concentrated efforts on marine natural product research are rare. One of these activities is represented by the Kieler Wirkstoff-Zentrum KiWiZ, which was founded in 2005 in Kiel (Germany).  相似文献   

7.
Recent studies on bioactive metabolites from marine macro- and microorganisms are reviewed with 83 refs. Structures of new sulphated and glycosylated secondary metabolites, which have been reported to have antifungal, immunomodulatory, and cytotoxic properties, are given. Some peculiarities of biosynthesis of natural compounds in marine organisms are revealed. It was shown that some natural products, isolated earlier from sponges, are produced by microbial symbionts. Different physiological activities associated with 8000 marine microbial (mainly symbiotic) strains are discussed as well as some prospects of marine biochemistry and biotechnology development.  相似文献   

8.
Lu XL  Xu QZ  Liu XY  Cao X  Ni KY  Jiao BH 《化学与生物多样性》2008,5(9):1669-1674
The increasing demands for new lead compounds in pharmaceutical and agrochemical industries have driven scientists to search for new bioactive natural products. Marine microorganisms are rich sources of novel, bioactive secondary metabolites, and have attracted much attention of chemists, pharmacologists, and molecular biologists. This mini-review mainly focuses on macrolactins, a group of 24-membered lactone marine natural products, aiming at giving an overview on their sources, structures, biological activities, as well as their potential medical applications.  相似文献   

9.
Data on the chemical structures and biologic activities of metabolites of obligate and facultative marine actinobacteria published between 2000 and 2007 are reviewed. The structural features of five groups of metabolites related to macrolides and compounds containing lactone, quinone, and diketopiperazine residues; cyclic peptides; alkaloids; and compounds of combined nature are discussed. The review shows the large chemical diversity of metabolites of actinobacteria isolated from marine ecotopes. In addition to metabolites identical to those previously isolated from terrestrial actinobacteria, marine actinobacteria produce compounds not found in other natural sources, including microorganisms. Probably, the biosynthesis of new chemotypes of bioactive compounds by marine actinobacteria is related to the chemical adaptation of microorganisms to the marine environment. The review emphasizes the importance of chemical studies of metabolites produced by marine actinobacteria. These studies will provide new data on marine microbial producers of biologically active compounds and the chemical structures and biologic activities of new natural lowmolecular-weight bioregulators.  相似文献   

10.
Bioactive natural products from endophytes: a review   总被引:2,自引:0,他引:2  
Endophytes, microorganisms that reside in the internal tissues of living plants without causing any immediate overt negative effects, have been found in every plant species examined to date and recognized as potential sources of novel natural products for exploitation in medicine, agriculture, and industry with more and more bioactive natural products isolated from the microorganisms. In this review, we focus mainly on bioactive natural products from endophytic microorganisms by their different functional roles. The prospect and facing problems of isolating natural products from endophytes are also discussed.  相似文献   

11.
海洋真菌因其特殊的生存环境和代谢机制而具有产生新型生物活性物质的潜力。近年来随着对海洋微生物研究的深入,从海洋真菌中发现了越来越多的具有抗肿瘤活性且结构新颖的天然产物。这些海洋真菌有的分离自海水、海泥或海洋沉积物,有的来自于海洋生物体。本文综述了近几年来从海洋真菌中分离得到的抗肿瘤天然产物的研究状况。  相似文献   

12.
Historically, marine invertebrates have been a prolific source of unique natural products, with a diverse array of biological activities. Recent studies of invertebrate-associated microbial communities are revealing microorganisms as the true producers of many of these compounds. Inspired by the human microbiome project, which has highlighted the human intestine as a unique microenvironment in terms of microbial diversity, we elected to examine the bacterial communities of fish intestines (which we have termed the fish microbiome) as a new source of microbial and biosynthetic diversity for natural products discovery. To test the hypothesis that the fish microbiome contains microorganisms with unique capacity for biosynthesizing natural products, we examined six species of fish through a combination of dissection and culture-dependent evaluation of intestinal microbial communities. Using isolation media designed to enrich for marine Actinobacteria, we have found three main clades that show taxonomic divergence from known strains, several of which are previously uncultured. Extracts from these strains exhibit a wide range of activities against both gram-positive and gram-negative human pathogens, as well as several fish pathogens. Exploration of one of these extracts has identified the novel bioactive lipid sebastenoic acid as an anti-microbial agent, with activity against Staphylococcus aureus, Bacillus subtilis, Enterococcus faecium, and Vibrio mimicus.  相似文献   

13.
Marine invertebrate animals such as sponges, gorgonians, tunicates and bryozoans are sources of biomedicinally relevant natural products, a small but growing number of which are advancing through clinical trials. Most metazoan and anthozoan species harbour commensal microorganisms that include prokaryotic bacteria, cyanobacteria (blue-green algae), eukaryotic microalgae, and fungi within host tissues where they reside as extra- and intra-cellular symbionts. In some sponges these associated microbes may constitute as much as 40% of the holobiont volume. There is now abundant evidence to suggest that a significant portion of the bioactive metabolites thought originally to be products of the source animal are often synthesized by their symbiotic microbiota. Several anti-cancer metabolites from marine sponges that have progressed to pre-clinical or clinical-trial phases, such as discodermolide, halichondrin B and bryostatin 1, are thought to be products derived from their microbiotic consortia. Freshwater and marine cyanobacteria are well recognised for producing numerous and structurally diverse bioactive and cytotoxic secondary metabolites suited to drug discovery. Sea sponges often contain dominant taxa-specific populations of cyanobacteria, and it is these phytosymbionts (= photosymbionts) that are considered to be the true biogenic source of a number of pharmacologically active polyketides and nonribosomally synthesized peptides produced within the sponge. Accordingly, new collections can be pre-screened in the field for the presence of phytobionts and, together with metagenomic screening using degenerate PCR primers to identify key polyketide synthase (PKS) and nonribosomal peptide synthetase (NRPS) genes, afford a biodiscovery rationale based on the therapeutic prospects of phytochemical selection. Additionally, new cloning and biosynthetic expression strategies may provide a sustainable method for the supply of new pharmaceuticals derived from the uncultured phytosymbionts of marine organisms.  相似文献   

14.
Marine biosphere offers wealthy flora and fauna, which represents a vast natural resource of imperative functional commercial grade products. Among the various bioactive compounds, biosurfactant (BS)/bioemulsifiers (BE) are attracting major interest and attention due to their structural and functional diversity. The versatile properties of surface active molecules find numerous applications in various industries. Marine microorganisms such as Acinetobacter, Arthrobacter, Pseudomonas, Halomonas, Myroides, Corynebacteria, Bacillus, Alteromonas sp. have been studied for production of BS/BE and exopolysaccharides (EPS). Due to the enormity of marine biosphere, most of the marine microbial world remains unexplored. The discovery of potent BS/BE producing marine microorganism would enhance the use of environmental biodegradable surface active molecule and hopefully reduce total dependence or number of new application oriented towards the chemical synthetic surfactant industry. Our present review gives comprehensive information on BS/BE which has been reported to be produced by marine microorganisms and their possible potential future applications.  相似文献   

15.
Marine organisms are an immense source of new biologically active compounds. These compounds are unique because the aqueous environment requires a high demand of specific and potent bioactive molecules. Diverse peptides with a wide range of biological activities have been discovered, including antimicrobial, antitumoral, and antiviral activities and toxins amongst others. These proteins have been isolated from different phyla such as Porifera, Cnidaria, Nemertina, Crustacea, Mollusca, Echinodermata and Craniata. Purification techniques used to isolate these peptides include classical chromatographic methods such as gel filtration, ionic exchange and reverse-phase HPLC. Multiple in vivo and in vitro bioassays are coupled to the purification process to search for the biological activity of interest. The growing interest to study marine natural products results from the discovery of novel pharmacological tools including potent anticancer drugs now in clinical trials. This review presents examples of interesting peptides obtained from different marine organisms that have medical relevance. It also presents some of the common methods used to isolate and characterize them.  相似文献   

16.
【背景】海洋微生物是复杂海洋生态环境中重要的生物资源之一。海洋微生物所产生的活性天然产物极为丰富,是药物或药物先导化合物的重要来源。【目的】探索海洋中海绵来源链霉菌Streptomycessp.S52-B的优势生长条件,挖掘其次级代谢产物,以期分离具有良好生物活性的天然产物。【方法】根据"One Strain Many Compounds"(OSMAC)策略,寻找利于Streptomyces sp. S52-B生长和次级代谢产物产生的优势培养基,结合质谱及特征性的紫外吸收谱图,选择培养基进行大量发酵。利用正相硅胶柱色谱、葡聚糖凝胶柱色谱和制备型高效液相色谱等进行分离纯化,并应用高分辨质谱和核磁共振光谱进行化合物结构解析。【结果】确定培养基A–D为海洋链霉菌S52-B的优势培养基,基于紫外吸收光谱与质谱分析,从培养基A的大量发酵物中分离鉴定3个具有吡咯并[4,3,2-de]喹啉核心结构的含氯化合物,属于氨酰胺类天然产物,其中Ammosalic acid为新结构化合物。【结论】已知含有吡咯并喹啉母核的氨酰胺类家族化合物具有优良的抗癌活性。本研究从海绵来源链霉菌S52-B中分离鉴定了3个氨酰胺类化合物,其中一个是新结构化合物,不仅丰富了此类化合物家族的结构类型,也为研究其生物合成途径中的未知机理奠定了基础,还有利于结合培养条件和基因组信息从这株海绵来源链霉菌中挖掘新结构的活性天然产物。  相似文献   

17.
近年来,从天然产物中开发生物农药成为了研究者关注的热点,海洋微生物因其独特的生存环境,产生了许多从陆地微生物中未曾发现的生物活性物质,为新型生物农药开发带来了佳音。从微生物多样性、抑菌物质的种类与结构和抑菌机理3个方面阐述深海细菌防控植物病原真菌的研究进展,并对其发展前景进行了展望,以期为抗植物病原真菌的海洋微生物的开发利用提供参考。  相似文献   

18.
Macroalgae are a diverse group of marine organisms that have developed complex and unique metabolic pathways to ensure survival in highly competitive marine environments. As a result, these organisms have been targeted for mining of natural biologically active components. The exploration of marine organisms has revealed numerous bioactive compounds that are proteinaceous in nature. These include proteins, linear peptides, cyclic peptides and depsipeptides, peptide derivatives, amino acids, and amino acid–like components. Furthermore, some species of macroalgae have been shown to contain significant levels of protein. While some protein‐derived bioactive peptides have been characterized from macroalgae, macroalgal proteins currently still represent good candidate raw materials for biofunctional peptide mining. This review will provide an overview of the important bioactive amino‐acid‐containing compounds that have been identified in macroalgae. Moreover, the potential of macroalgal proteins as substrates for the generation of biofunctional peptides for utilization as functional foods to provide specific health benefits will be discussed.  相似文献   

19.
The phylum Mollusca represents an enormous diversity of species with eight distinct classes. This review provides a taxonomic breakdown of the published research on marine molluscan natural products and the medicinal products currently derived from molluscs, in order to identify priority targets and strategies for future research. Some marine gastropods and bivalves have been of great interest to natural products chemists, yielding a diversity of chemical classes and several drug leads currently in clinical trials. Molluscs also feature prominently in a broad range of traditional natural medicines, although the active ingredients in the taxa involved are typically unknown. Overall secondary metabolites have only been investigated from a tiny proportion (<1%) of molluscan species. At the class level, the number of species subject to chemical studies mirrors species richness and our relative knowledge of the biology of different taxa. The majority of molluscan natural products research is focused within one of the major groups of gastropods, the opisthobranchs (a subgroup of Heterobranchia), which are primarily comprised of soft‐bodied marine molluscs. Conversely, most molluscan medicines are derived from shelled gastropods and bivalves. The complete disregard for several minor classes of molluscs is unjustified based on their evolutionary history and unique life styles, which may have led to novel pathways for secondary metabolism. The Polyplacophora, in particular, have been identified as worthy of future investigation given their use in traditional South African medicines and their abundance in littoral ecosystems. As bioactive compounds are not always constitutively expressed in molluscs, future research should be targeted towards biosynthetic organs and inducible defence reactions for specific medicinal applications. Given the lack of an acquired immune system, the use of bioactive secondary metabolites is likely to be ubiquitous throughout the Mollusca and broadening the search field may uncover interesting novel chemistry.  相似文献   

20.
红树林样品不经分离的微生物群体培养物生物活性研究   总被引:4,自引:0,他引:4  
刘颖  洪葵  庄令  林海鹏 《微生物学报》2007,47(1):110-114
从海南、广西与广东三省的红树林区采集了181个样品,不进行微生物分离而直接作发酵剂接种到发酵培养基进行发酵,取发酵上清液进行抗细菌、抗真菌与肿瘤细胞毒活性的测定。同时对样品进行可培养微生物的分离与生物活性测定。结果显示:不同样品类型的生物活性差异较大。在15个具有强抗活性的样品中,有5个样品分离到的单株菌均无任何生物活性,说明这5个样品的生物活性可能是由微生物的群体作用产生的,也可能是某种没有培养出的微生物产生的。初步表明了探索微生物混合培养获得生物活性代谢产物的可能性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号