首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Paternal inheritance of mitochondria DNA in sheep was discovered by examination of 152 sheep from 38 hybrid families for mtDNA D-loop polymorphisms using PCR-RFLP, amplification of repeated sequence somain, and PCR-SSCP of the D-loop 5′ end region of a 253 bp fragment. Our findings have provided the first evidence of paternal inheritance of mtDNA in sheep and possible mechanisms of paternal inheritance were discussed.  相似文献   

2.
Paternal inheritance of mitochondria DNA in sheep was discovered by examination of 152 sheep from 38 hybrid families for mtDNA D-loop polymorphisms using PCR-RFLP, amplification of repeated sequence somain, and PCR-SSCP of the D-loop 5′ end region of a 253 bp fragment. Our findings have provided the first evidence of paternal inheritance of mtDNA in sheep and possible mechanisms of paternal inheritance were discussed.  相似文献   

3.
我国主要地方绵羊品种mtDNA D-loop区PCR-RFLP研究   总被引:15,自引:1,他引:14  
利用5种限制性内切酶(Hinf I,Msp I,Sau3A I,Xsp I,Taq I),采用PCR-RFLP技术研究了我国9个地方绵羊品种以及2个引入品种共计83只绵羊个体线粒体DNA D-loop区的多态性。结果表明,我国主要地方绵羊品种线粒体DNA D-loop区存在两种基本单体型,提示我国主要地方绵羊品种起源于两个母系祖先。线粒体DNA D-loop区多态度为0.042 1%,说明我国地方绵羊品种线粒体DNA多态度较为贫乏。
  相似文献   

4.
Intracytoplasmic sperm injection (ICSI) is now used when severe male-factor infertility has been documented. Since defective mitochondrial functions may result in male hypofertility, it is of prime importance to evaluate the risk of paternal transmission of an mtDNA defect to neonates. DNA samples from the blood of 21 infertile couples and their 27 neonates born after ICSI were studied. The highly polymorphic mtDNA D-loop region was analyzed by four PCR-based approaches. With denaturing gradient gel electrophoresis (DGGE), which allows 2% of a minor mtDNA species to be detected, the 27 newborns had a DGGE pattern identical to that of their mother but different from that of their father. Heteroplasmy documented in several parents and children supported an exclusive maternal inheritance of mtDNA. The parental origin of the children's mtDNA molecules also was studied by more-sensitive assays: restriction-endonuclease analysis (REA) of alpha[32P]-radiolabeled PCR products; paternal-specific PCR assay; and depletion of maternal mtDNA, followed by REA. We did not detect paternal mtDNA in nine neonates, with a sensitivity level of 0.01% in five children, 0.1% in two children, and 1% in two children. The estimated ratio of sperm-to-oocyte mtDNA molecules in humans is 0.1%-1.5%. Thus, we conclude that, in these families, the ICSI procedure performed with mature spermatozoa did not alter the uniparental pattern of inheritance of mtDNA.  相似文献   

5.
P. D. Rawson  C. L. Secor    T. J. Hilbish 《Genetics》1996,144(1):241-248
Blue mussels in the Mytilus edulis species complex have a doubly uniparental mode of mtDNA inheritance with separate maternal and paternal mtDNA lineages. Female mussels inherit their mtDNA solely from their mother, while males inherit mtDNA from both parents. In the male gonad the paternal mtDNA is preferentially replicated so that only paternal mtDNA is transmitted from fathers to sons. Hybridization is common among differentiated blue mussel taxa; whenever it involves M. trossulus, doubly uniparental mtDNA inheritance is disrupted. We have found high frequencies of males without and females with paternal mtDNA among hybrid mussels produced by interspecific matings between M. galloprovincialis and M. trossulus. In contrast, hybridization between M. galloprovincialis and M. edulis does not affect doubly uniparental inheritance, indicating a difference in the divergence of the mechanisms regulating mtDNA inheritance among the three blue mussel taxa. Our data indicate a high frequency of disrupted mtDNA transmission in F(1) hybrids and suggest that two separate mechanisms, one regulating the transmission of paternal mtDNA to males and another inhibiting the establishment of paternal mtDNA in females, act to regulate doubly uniparental inheritance. We propose a model for the regulation of doubly uniparental inheritance that is consistent with these observations.  相似文献   

6.
Paternal inheritance of mitochondria in Chlamydomonas   总被引:1,自引:0,他引:1  
To analyze mitochondrial DNA (mtDNA) inheritance, differences in mtDNA between Chlamydomonas reinhardtii and Chlamydomonas smithii, respiration deficiency and antibiotic resistance were used to distinguish mtDNA origins. The analyses indicated paternal inheritance. However, these experiments raised questions regarding whether paternal inheritance occurred normally. Mitochondrial nucleoids were observed in living zygotes from mating until 3 days after mating and then until progeny formation. However, selective disappearance of nucleoids was not observed. Subsequently, experimental serial backcrosses between the two strains demonstrated strict paternal inheritance. The fate of mt+ and mt− mtDNA was followed using the differences in mtDNA between the two strains. The slow elimination of mt+ mtDNA through zygote maturation in darkness was observed, and later the disappearance of mt+ mtDNA was observed at the beginning of meiosis. To explain the different fates of mtDNA, methylation status was investigated; however, no methylation was detected. Variously constructed diploid cells showed biparental inheritance. Thus, when the mating process occurs normally, paternal inheritance occurs. Mutations disrupting mtDNA inheritance have not yet been isolated. Mutations that disrupt maternal inheritance of chloroplast DNA (cpDNA) do not disrupt inheritance of mtDNA. The genes responsible for mtDNA inheritance are different from those of chloroplasts.  相似文献   

7.
西藏小型猪线粒体D-loop区及微卫星多态性的遗传学分析   总被引:5,自引:0,他引:5  
目的通过分析西藏小型猪线粒体控制区(D-loop区)及微卫星位点的遗传多态性,检测西藏小型猪的遗传背景,从而为其作为实验动物提供分子生物学方面的可靠依据。方法利用特异性引物对西藏小型猪的线粒体D-loop区及10个具有多态性的微卫星位点进行扩增,割胶纯化并对线粒体D-loop区进行测序,另外采用聚丙烯酰胺凝胶电泳的方法分离微卫星位点的等位基因。结果西藏小型猪线粒体D-loop区全序列没有多态性,微卫星位点则具有高度的遗传多态性和杂合度,分别为0.584和0.573。结论西藏小型猪线粒体基因组无多态性,证明其在母系进化和遗传上与其他猪种较为一致,本实验所用的西藏小型猪生长于一个封闭的环境,导致其微卫星位点遗传多态性的中低度水平。  相似文献   

8.
The maternal inheritance of mitochondrial DNA (mtDNA) in eukaryotic organisms occurs because of the selective destruction of paternal mtDNA molecules that may be present in the zygote. The elimination of sperm mtDNA is less efficient in interspecific crosses, and biparental inheritance of mtDNA has been observed in a variety of species. Because interspecific crosses are likely to be extremely rare in nature, parental inheritance of mtDNA has been deemed of little relevance to population genetics. The mtDNA of the parasitic trematode Schistosoma mansoni was examined for its utility in addressing epidemiological questions related to the transmission and spread of schistosomiasis. Prior to embarking on such experiments, we sought to confirm the mode of inheritance of this molecule using the highly polymorphic mtDNA minisatellite as a marker. In 3 separate crosses, mtDNA apparently identical to paternal DNA was observed in some individuals of the F2 and F3 generations. These observations thus suggest the intraspecific paternal inheritance of mtDNA across multiple generations in Schistosoma mansoni.  相似文献   

9.
With the identification of a patient with mutated mitochondrial DNA (mtDNA) of paternal origin, it has been unequivocally proven that not only does paternal mtDNA survive in the zygote, but it can also contribute substantially to the mtDNA pool of adult, human skeletal muscle. The questions are: how often does paternal mtDNA inheritance occur and what mechanisms are involved? In this paper, we will review current knowledge on the fate of sperm mitochondria after fertilization and discuss the impact paternal inheritance may have on our understanding of mitochondrial biology.  相似文献   

10.
Maternal inheritance is one of the hallmarks of animal mitochondrial DNA (mtDNA) and central to its success as a molecular marker. This mode of inheritance and subsequent lack of heterologous recombination allows us to retrace evolutionary relationships unambiguously down the matriline and without the confounding effects of recombinant genetic information. Accumulating evidence of biparental inheritance of mtDNA (paternal leakage), however, challenges our current understanding of how this molecule is inherited. Here, using Drosophila simulans collected from an East African metapopulation exhibiting recurring mitochondrial heteroplasmy, we conducted single fly matings and screened F1 offspring for the presence of paternal mtDNA using allele-specific PCR assays (AS–PCR). In all, 27 out of 4092 offspring were identified as harboring paternal mtDNA, suggesting a frequency of 0.66% paternal leakage in this species. Our findings strongly suggest that recurring mtDNA heteroplasmy as observed in natural populations of Drosophila simulans is most likely caused by repeated paternal leakage. Our findings further suggest that this phenomenon to potentially be an integral part of mtDNA inheritance in these populations and consequently of significance for mtDNA as a molecular marker.  相似文献   

11.
Hoolahan AH  Blok VC  Gibson T  Dowton M 《Genetica》2011,139(11-12):1509-1519
Animal mtDNA is typically assumed to be maternally inherited. Paternal mtDNA has been shown to be excluded from entering the egg or eliminated post-fertilization in several animals. However, in the contact zones of hybridizing species and populations, the reproductive barriers between hybridizing organisms may not be as efficient at preventing paternal mtDNA inheritance, resulting in paternal leakage. We assessed paternal mtDNA leakage in experimental crosses of populations of a cyst-forming nematode, Globodera pallida. A UK population, Lindley, was crossed with two South American populations, P5A and P4A. Hybridization of these populations was supported by evidence of nuclear DNA from both the maternal and paternal populations in the progeny. To assess paternal mtDNA leakage, a ~3.4?kb non-coding mtDNA region was analyzed in the parental populations and in the progeny. Paternal mtDNA was evident in the progeny of both crosses involving populations P5A and P4A. Further, paternal mtDNA replaced the maternal mtDNA in 22 and 40?% of the hybrid cysts from these crosses, respectively. These results indicate that under appropriate conditions, paternal leakage occurs in the mtDNA of parasitic nematodes, and supports the hypothesis that hybrid zones facilitate paternal leakage. Thus, assumptions of strictly maternal mtDNA inheritance may be frequently violated, particularly when divergent populations interbreed.  相似文献   

12.
于晓丽  黄原 《动物学杂志》2008,43(2):145-149
动物线粒体DNA作为遗传标记广泛用于从种内到高级阶元的许多生物学领域,这些应用是建立在线粒体DNA的严格母系遗传方式和不发生重组的基础上的。近年来的研究提出了一些能够证明动物mtDNA发生重组的直接和间接证据。动物mtDNA重组可能主要通过两条途径发生,一条途径是母系mtDNA与核基因组中mtDNA假基因间发生重组;另一条途径是通过父系渗漏引起的不同单倍型的双亲mtDNA间发生重组。父系渗漏是最可能的途径。如果动物界广泛存在线粒体DNA重组,将会对以mtDNA严格母系遗传为基础的许多应用领域产生重要影响。  相似文献   

13.
Lost in the zygote: the dilution of paternal mtDNA upon fertilization   总被引:1,自引:0,他引:1  
Wolff JN  Gemmell NJ 《Heredity》2008,101(5):429-434
The mechanisms by which paternal inheritance of mitochondrial DNA (mtDNA) (paternal leakage) and, subsequently, recombination of mtDNA are prevented vary in a species-specific manner with one mechanism in common: paternally derived mtDNA is assumed to be vastly outnumbered by maternal mtDNA in the zygote. To date, this dilution effect has only been described for two mammalian species, human and mouse. Here, we estimate the mtDNA content of chinook salmon oocytes to evaluate the dilution effect operating in another vertebrate; the first such study outside a mammalian system. Employing real-time PCR, we determined the mtDNA content of chinook salmon oocytes to be 3.2 x 10(9)+/-1.0 x 10(9), and recently, we determined the mtDNA content of chinook salmon sperm to be 5.73+/-2.28 per gamete. Accordingly, the ratio of paternal-to-maternal mtDNA if paternal leakage occurs is estimated to be 1:5.5 x 10(8). This contribution of paternal mtDNA to the overall mtDNA pool in salmon zygotes is three to five orders of magnitude smaller than those revealed for the mammalian system, strongly suggesting that paternal inheritance of mtDNA per offspring will be much less likely in this system than in mammals.  相似文献   

14.
Zhao X  Li N  Guo W  Hu X  Liu Z  Gong G  Wang A  Feng J  Wu C 《Heredity》2004,93(4):399-403
The mitochondrial DNA of 172 sheep from 48 families were typed by using PCR-RFLP, direct amplification of the repeated sequence domain and sequencing analysis. The mitochondrial DNA from three lambs in two half-sib families were found to show paternal inheritance. Our findings provide direct evidence of paternal inheritance of mitochondria DNA in sheep. A total of 12 highly polymorphic microsatellite markers, which mapped on different chromosomes, were employed to type the sheep population to confirm family relationships. Possible mechanisms of paternal inheritance are discussed.  相似文献   

15.
Maternal inheritance of mitochondrial DNA (mtDNA) is generally observed in many eukaryotes. Sperm-derived paternal mitochondria and their mtDNA enter the oocyte cytoplasm upon fertilization and then normally disappear during early embryogenesis. However, the mechanism underlying this clearance of paternal mitochondria has remained largely unknown. Recently, we showed that autophagy is required for the elimination of paternal mitochondria in Caenorhabditis elegans embryos. Shortly after fertilization, autophagosomes are induced locally around the penetrated sperm components. These autophagosomes engulf paternal mitochondria, resulting in their lysosomal degradation during early embryogenesis. In autophagy-defective zygotes, paternal mitochondria and their genomes remain even in the larval stage. Therefore, maternal inheritance of mtDNA is accomplished by autophagic degradation of paternal mitochondria. We also found that another kind of sperm-derived structure, called the membranous organelle, is degraded by zygotic autophagy as well. We thus propose to term this allogeneic (nonself) organelle autophagy as allophagy.  相似文献   

16.
Sato M  Sato K 《Autophagy》2012,8(3):424-425
Maternal inheritance of mitochondrial DNA (mtDNA) is generally observed in many eukaryotes. Sperm-derived paternal mitochondria and their mtDNA enter the oocyte cytoplasm upon fertilization and then normally disappear during early embryogenesis. However, the mechanism underlying this clearance of paternal mitochondria has remained largely unknown. Recently, we showed that autophagy is required for the elimination of paternal mitochondria in Caenorhabditis elegans embryos. Shortly after fertilization, autophagosomes are induced locally around the penetrated sperm components. These autophagosomes engulf paternal mitochondria, resulting in their lysosomal degradation during early embryogenesis. In autophagy-defective zygotes, paternal mitochondria and their genomes remain even in the larval stage. Therefore, maternal inheritance of mtDNA is accomplished by autophagic degradation of paternal mitochondria. We also found that another kind of sperm-derived structure, called the membranous organelle, is degraded by zygotic autophagy as well. We thus propose to term this allogeneic (nonself) organelle autophagy as allophagy.  相似文献   

17.
The mode of inheritance of chloroplast and mitochondrial DNA (mtDNA) in rye x triticale intergeneric hybrids has been studied with the use of specific PCR markers for loci 18S/5S and 3'rbcL in organelle DNA. In rye x triticale BC1, mtDNA copies of two types, paternal and maternal, have been found; in BC2 plants, only paternal mtDNA and chloroplast DNA (cpDNA) have been detected. Mechanisms determining the inheritance and/or differential amplification of organelles of a specific type are discussed.  相似文献   

18.
More than 100 species of bivalve mollusks are currently known to carry two highly diverged mitochondrial DNA (mtDNA) molecules, one of which is transmitted through the egg and the other through the sperm generation after generation, faithfully and uninterruptedly. This mtDNA system, which has become known as doubly uniparental inheritance (DUI), is most likely unique in eukaryotes and constitutes a striking deviation from the strictly maternal inheritance (SMI) of mtDNA that is the rule in the animal kingdom. Here, I present a model of how the paternal mtDNA may escape the mitochondrial destruction that occurs prior to sperm formation and enter the male germ line in the newly formed embryo. In essence, the model treats the sperm-transmitted mtDNA as a molecule that takes a ride with the sperm. The model can be easily tested and, if passed the tests, may open the way for the understanding of DUI at the molecular level and throw light on the mechanisms and evolution of mtDNA transmission in general. In addition, the model shifts attention from nuclear control of paternal mtDNA inheritance, whether systematic (as DUI) or leaky (as the cases reported in a wide variety of animal species), to the mtDNA itself as the protagonist of its own transmission. This possibility has been, so far, ignored in studies of paternal mtDNA transmission in other species including humans.  相似文献   

19.
The transmission profiles of sperm mtDNA introduced into fertilized eggs were examined in detail in F1 hybrids of mouse interspecific crosses by addressing three aspects. The first is whether the leaked paternal mtDNA in fertilized eggs produced by interspecific crosses was distributed stably to all tissues after the eggs'' development to adults. The second is whether the leaked paternal mtDNA was transmitted to the subsequent generations. The third is whether paternal mtDNA continuously leaks in subsequent backcrosses. For identification of the leaked paternal mtDNA, we prepared total DNA samples directly from tissues or embryos and used PCR techniques that can detect a few molecules of paternal mtDNA even in the presence of 10(8)-fold excess of maternal mtDNA. The results showed that the leaked paternal mtDNA was not distributed to all tissues in the F1 hybrids or transmitted to the following generations through the female germ line. Moreover, the paternal mtDNA leakage was limited to the first generation of an interspecific cross and did not occur in progeny from subsequent backcrosses. These observations suggest that species-specific exclusion of sperm mtDNA in mammalian fertilized eggs is extremely stringent, ensuring strictly maternal inheritance of mtDNA.  相似文献   

20.
动物线粒体基因组研究进展   总被引:14,自引:0,他引:14  
对动物线粒体分子生物学的最新研究进展进行了较详细的阐述.从线粒体基因组(mtDNA)的研究背景出发,重点介绍了动物线粒体基因组的组成和结构特点,以及目前动物mtDNA与核基因组的关系、线粒体基因的遗传、起源和进化研究中的热点问题.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号