首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 576 毫秒
1.
郑勇  贺纪正 《应用生态学报》2020,31(7):2464-2472
干旱和氮沉降深刻影响着人类世森林生态系统的生命活动与物质循环,进而影响全球碳平衡、并反馈作用于气候变化。土壤微生物驱动元素的生物地球化学循环和关键土壤生态过程,在气候变化生物学研究方面具有核心地位和全球重要性。本文综述了干旱和氮沉降对森林土壤细菌和菌根真菌的影响。提出未来应加强全球变化多因子交互作用对土壤微生物多样性、活性与生态功能的研究;建立野外长期定位站,强化亚热带森林生态系统与全球变化研究;注重土壤生物之间互作及网络研究;利用微生物大数据建立相关的机理模型等。从认识微生物多样性和群落组成对全球变化的响应与适应,逐步发展为调控利用微生物群落服务于森林的优化管理、生态资源的合理保护与可持续利用,为充分发挥微生物减缓全球气候变化的作用提供理论基础。  相似文献   

2.
季节性雪被变化对森林凋落物分解及土壤氮动态的影响   总被引:2,自引:0,他引:2  
全球气候变化引发的雪被格局变化将深刻影响植被的凋落物分解、陆地生态系统的土壤养分循环等过程.森林是陆地生态系统的主体,在全球生物地球化学循环中起着不可替代的作用.本研究综述了季节性雪被变化对森林凋落物分解及土壤氮动态的影响.全球气候变化情景下季节性雪被表现出因地域而异的增加或减少的变化格局,一方面通过改变环境温湿度、凋落物质量、分解者动态等直接影响分解过程,另一方面通过改变森林群落结构、植被物候、土壤养分等间接地作用于凋落物分解.同时,季节性雪被通过影响氮富集作用、雪被下土壤温湿度、冻融循环、森林群落、雪下动物和微生物等相关因子而改变森林土壤氮循环.本领域未来应开展的研究是: 1) 全面考虑全球气候变化情景下季节性雪被格局的变异性,开展不同季节性雪被格局变化的模拟研究;2) 开展季节性雪被融雪水淋溶作用对森林凋落物分解和土壤氮动态的影响研究;3) 阐明不同生态系统和气候带中季节性雪被格局变化对森林凋落物分解过程和土壤氮动态的驱动机制研究;4) 量化季节性雪被变化对森林凋落物分解和土壤氮动态在雪被覆盖期的瞬时影响和无雪期的延续影响,为阐明和模型预测陆地生态系统生物地球化学循环对全球气候变化的响应提供理论基础和数据支持.  相似文献   

3.
中国森林土壤碳储量与土壤碳过程研究进展   总被引:24,自引:0,他引:24  
刘世荣  王晖  栾军伟 《生态学报》2011,31(19):5437-5448
森林是陆地生态系统的主体,是陆地上最大的碳储库和碳吸收汇。国内外研究表明,土壤亚系统在调节森林生态系统碳循环和减缓全球气候变化中起着重要作用。但是,由于森林类型的多样性、结构的复杂性以及森林对干扰和变化环境响应的时空动态变化,至今对森林土壤碳储量和变率的科学估算,以及土壤关键碳过程及其稳定性维持机制的认识还十分有限。综述了近十几年来我国森林土壤碳储量和土壤碳过程的研究工作,主要包括不同森林类型土壤碳储量、土壤碳化学稳定性、土壤呼吸及其组分、土壤呼吸影响机制、气候变化与土地利用对土壤碳过程的影响等;评述了土壤碳过程相关科学问题的研究进展,讨论了尚未解决的主要问题,并分析了未来土壤碳研究的发展趋势,以期为促进我国森林土壤碳循环研究,科学评价森林土壤碳固持潜力及其稳定性维持机制和有效实施森林生态系统管理提供科学参考。  相似文献   

4.
全球变暖可能加快或抑制森林土壤氮循环,进而影响森林生态系统生产力,而且这种影响随时间的持续而更加复杂。本研究以亚热带杉木幼林和成熟林土壤为对象,通过土壤电缆增温模拟未来气候变化情景,分析土壤无机氮含量对模拟增温的响应。结果表明: 经过持续3年的增温试验(4 ℃),亚热带地区增温显著降低了杉木幼林和成熟林土壤总无机氮和铵态氮含量。其中杉木幼林土壤的降幅更大,其0~10、10~20、20~40、40~60 cm土层土壤铵态氮含量的降幅分别为32.1%、37.1%、20.8%、19.9%。增温导致2种林分土壤可溶性有机氮减少和N2O排放加快,土壤矿化基质输入减少和气态氮损失增大是土壤中现存无机氮含量减少的原因。杉木幼林土壤矿化基质降幅和气态氮排放升高幅度均比成熟林土壤大,杉木幼林土壤对增温更为敏感。3年的增温造成杉木幼林和成熟林土壤无机氮含量下降,可能对杉木人工林生产力产生不利的影响。  相似文献   

5.
几乎所有树木的根系都能与丛枝菌根(AM)真菌或外生菌根(EM)真菌形成共生关系,从而调节森林生态系统土壤碳(C)、氮(N)循环等功能过程。深入理解不同菌根类型森林土壤C、N循环的差异及其影响机制是重要的生态研究命题。该文明晰了AM与EM森林土壤C、N循环的差异;基于森林土壤C、N输入、稳定和输出等3个过程剖析了AM和EM树种对土壤C、N循环的影响机制;比较了不同菌根类型森林土壤C、N循环过程对全球变化的响应;指出了该研究领域所面临的主要挑战:(1)全面比较研究不同菌根类型森林土壤C、N循环及其相关联的生态系统结构和功能特征,为提高森林生产力、发挥生态系统服务功能提供理论基础和数据;(2)深入认知不同菌根树种地上凋落物及地下菌根与自由微生物间相互作用对土壤C、N循环的影响,以阐明不同菌根类型森林土壤C、N循环的潜在机制;(3)改进研究方法,应用新技术手段,充分考虑时空尺度效应,以便能用小尺度的研究结果合理地解释和预测生态系统C、N循环;(4)加强不同菌根类型森林土壤C、N稳定性差异的研究,以准确评价森林结构和功能对全球变化的响应。  相似文献   

6.
亚高山森林生态系统过程研究进展   总被引:3,自引:2,他引:1  
刘彬  杨万勤  吴福忠 《生态学报》2010,30(16):4476-4483
亚高山森林是以冷、云杉属为建群种或优势种的暗针叶林为主体的森林植被。亚高山森林在庇护邻近脆弱生态系统、保育生物多样性、涵养水源、碳吸存和指示全球气候变化等方面具有十分重要且不可替代的作用和地位,其多样化的植被和土壤组合为研究生态系统过程提供了天然的实验室。亚高山森林的群落演替与更新、生物多样性保育、水文生态过程、生物元素的生物地球化学循环以及亚高山森林生态过程对气候变化的响应等研究已取得了明显的进展。但有关全球变化条件下的亚高山森林土壤生物多样性和冬季生态学过程等研究明显不足。全球气候变化背景下的冬季生态学过程、极端灾害事件对亚高山森林生态系统过程的影响、亚高山森林生物多样性的保育机制、亚高山森林土壤生物多样性与生态系统过程的耦合机制等可能是未来研究的前沿科学问题。  相似文献   

7.
增温对高寒草甸生态系统碳氮循环耦合关系的影响 陆地生态系统碳吸收受土壤氮素可用性的调节。然而,全球变化背景下的不同生态系统组分的碳氮比及其所反映的碳氮循环耦合关系尚不十分清楚。本文运用数据同化的方法,将一个高寒草甸增温试验的14组数据同化到草地生态系统模型中,从而评估了增温如何影响陆地生态系统的碳氮循环耦合关系。研究结果表明,增温提高了土壤氮素的有效性,降低了土壤活性碳库的碳氮比,导致植物对土壤氮的吸收增加。但是由于植物叶片吸收的碳比吸收的氮增加更多,使得叶片中碳氮比增加,而根部的碳输入增加则低于氮的增加,导致根部的碳氮比减少。同时,增温降低了凋落物碳氮比,可能是在土壤高氮有效性的条件下,凋落物氮的固定得到增强;而且增温加速了凋落物的分解。同时增温还增加了慢速土壤有机质的碳氮比,使得该土壤碳库的碳固存潜力增大。由于大多数模型在不同的环境中通常使用相对固定的碳氮比,本研究所发现的气候变暖条件下碳氮比的差异变化可为模型参数化提供一个有效的参考,有利于模型对未来气候变化背景下生态系统碳氮耦合关系响应的预测。  相似文献   

8.
森林生态系统碳循环对全球氮沉降的响应   总被引:4,自引:0,他引:4  
森林土壤和植被储存着全球陆地生态系统大约46%的碳,在全球碳平衡中起着非常重要的作用。过去几十年来,森林生态系统的碳循环和碳吸存受到了全球氮沉降的深刻影响,因为氮沉降改变了陆地生态系统的生产力和生物量积累。以欧洲和北美温带森林区域开展的研究为基础,综述了氮沉降对植物光合作用、土壤呼吸、土壤DOM及林木生长的影响特征和机理,探讨了森林生态系统碳动态对氮沉降响应的不确定性因素。热带森林C、N循环与大部分温带森林不同,人为输入的氮对热带生态系统过程的影响也可能不同,因此指出了在热带地区开展碳氮循环耦合研究的必要性和紧迫性。  相似文献   

9.
全球变化是近几十年世界广泛关注的热点之一.土地利用变化和化石能源消耗已引起如温室气体增多、气温升高、降水格局改变等多种形式的变化.这些变化对整个生态系统过程,特别是陆地生态系统碳氮循环过程有着深远影响.自20世纪70年代以来,世界各地已开展大量野外控制试验用以模拟单因子和多因子气候变化的影响,这些研究对解释生态系统响应和适应全球变化的内在机制提供了重要的基础.本文梳理了全球变化控制试验的发展历程,介绍了不同因子模拟控制试验的研究概况及不足之处,重点阐述CO2倍增、增温、降水和模拟氮沉降等全球变化控制试验在土壤微生物生态学研究中的应用,探析土壤微生物及其介导的生态学过程对全球变化的响应和反馈,并对未来野外控制试验需关注的问题和研究方向进行了展望,为认识气候变化对地下生态系统的影响提供参考.  相似文献   

10.
氮沉降对森林土壤磷循环的影响   总被引:8,自引:0,他引:8  
陈美领  陈浩  毛庆功  朱晓敏  莫江明 《生态学报》2016,36(16):4965-4976
磷是生物体必需的大量元素之一,也是许多生态系统的主要限制因子。近年来,大气氮沉降日益加剧,已对森林生态系统磷循环产生了不可忽视的影响。关于氮沉降对生态系统磷循环的影响已开展了一系列的研究,然而尚缺少对其整体的认识。因此,通过收集国内外已发表的相关文章,从以下五个方面综述氮沉降对森林生态系统土壤磷循环的影响及其机理:1)阐述了森林生态系统土壤磷循环的概念;2)介绍了氮沉降对森林土壤磷循环影响的研究方法,包括长期定位模拟氮沉降法、自然氮沉降梯度法和同位素示踪法等;3)概述了氮沉降对森林生态系统土壤磷循环的影响。目前的研究结论趋向于认为长期氮沉降使森林土壤磷循环速率加快。长期氮输入易于使土壤中可溶性磷向非活性磷酸盐库迁移而难以被利用。因此,为了满足需求,土壤磷酸酶活性将增加以加速有机磷的矿化,从而加速磷素在土壤-植物-微生物之间的周转。4)探讨了氮沉降影响森林土壤磷循环的机制。氮沉降可通过改变土壤有机质的性质、微生物群落组成、磷酸酶活性以及阳离子的流动性等途径影响森林土壤磷循环;5)指出了当前研究存在的问题及未来的研究方向。  相似文献   

11.
冬季升温对高山生态系统碳氮循环过程的影响   总被引:1,自引:0,他引:1  
宗宁  石培礼 《生态学报》2020,40(9):3131-3143
全球温度升高是目前面临的重要环境问题,但存在明显的季节差异性,即冬季升温幅度显著高于夏季的季节非对称性趋势,这在高纬度和高海拔地区更加显著。冬季升温会直接影响积雪覆盖与冰冻层厚度,并引起冻融交替循环的增加,而冬季植物处于休眠状态,这会直接影响土壤中有效氮的吸收与损失,引起土壤有效氮可利用性的变化。然而,关于冬季增温对后续生长季节植物活动、土壤碳氮循环过程的影响等方面的研究仍存在诸多不确定。综述了冬季升温对积雪覆盖与冻融交替循环改变对高山生态系统物质循环的影响,以及冬季升温对土壤碳氮循环、微生物与酶活性的影响,并由此引起的植物物候期、群落结构、生产与养分循环与凋落物分解等生理、生态过程方面的研究进展。在未来的研究中,应针对不同生态系统特点选择合适的冬季增温方式,加强非极地苔原地区关于冬季升温的研究,注重关注冬季升温对植物-土壤微生物之间反馈作用的影响,重点关注冬季升温对生态系统的延滞效应。  相似文献   

12.
土壤微生物对气候变暖和大气N沉降的响应   总被引:10,自引:0,他引:10       下载免费PDF全文
气候变暖和大气N沉降是近一、二十年来人们非常关注的全球变化现象,它们所带来的一系列生态问题已成为全球变化研究的重要议题。它们不仅影响地上植被生长和群落组成,还直接或间接地影响土壤微生物过程,而土壤微生物对此做出的响应正是生态系统反馈过程中非常重要的环节。该文分别从气候变化对土壤微生物的影响(土壤微生物量、微生物活动和微生物群落结构)和土壤微生物对气候变化的响应(凋落物分解、养分利用与循环以及养分的固持与流失)两个角度,综述近期土壤微生物对气候变暖和大气N沉降响应与适应的研究进展。气候变暖和大气N沉降对土壤微生物的影响更多地反映在微生物群落的结构和功能上,而土壤微生物量、微生物活动和群落结构的变化又会通过改变凋落物分解、养分利用和C、N循环等重要的土壤生态系统功能和过程做出响应,形成正向或负向反馈,加强或削弱气候变化给整个陆地生态系统带来的影响。然而,到目前为止土壤微生物的响应对陆地生态系统产生的最终结果仍是未决的关键性问题。  相似文献   

13.
杨玉盛 《生态学报》2017,37(1):1-11
随着全球环境变化和人类活动对生态系统影响的日益加深,生态系统结构和功能发生强烈变化,生态系统提供各类资源和服务的能力在显著下降。在这种背景下,全面认识生态系统的结构功能与全球环境变化的关系已成为当前生态学研究的热点之一。本文综述了全球环境变化对典型生态系统(包括森林生态系统、河口湿地生态系统、城市生态系统)影响以及全球环境变化适应的研究现状,分析研究面临的困难及挑战。在此基础上,提出对未来研究发展趋势的展望。在森林生态系统与全球环境变化研究上,未来应重视能更好模拟现实情景的、多因子、长期的全球环境变化控制试验,并注重不同生物地球化学循环之间的耦合作用。在湿地生态系统与全球环境变化研究上,未来应加强氮沉降、硫沉降及盐水入侵对湿地生态系统碳氮循环的影响,明晰滨海湿地的蓝碳功能,加强极端气候和人类干扰影响下湿地生态系统结构和功能变化及恢复力的研究。在城市生态系统与全球环境变化研究上,未来应深化城市生物地球化学循环机制研究,实现城市生态系统的人本需求侧重与转向,并开展典型地区长期、多要素综合响应研究。在全球环境变化适应研究上,未来应构架定量化、跨尺度的适应性评价体系,加强典型区域/部门的适应性研究以及适应策略实施的可行性研究,注重适应与减缓对策的关联研究及实施的风险评估。期望本综述为我国生态系统与全球环境变化研究提供一些参考。  相似文献   

14.
微生物和土壤酶是陆地生态系统中生物地球化学循环的重要驱动力,深入理解微生物在生态系统中的调节作用以及气候变化过程中微生物量和土壤酶的响应机制是生态学领域关注的重要科学问题.本研究从气候因素角度出发,基于生态化学计量学理论,综述了微生物和土壤酶在陆地生态系统碳氮磷循环中的作用,以及土壤微生物生物量碳氮磷和土壤酶化学计量对气候变化的响应机制,即: 改变微生物代谢速率和酶活性;调整微生物群落结构;调整微生物生物量碳氮磷与土壤酶化学计量特征;改变碳氮磷养分元素利用效率.最后分析当前研究的不足,并提出了该领域亟待解决的科学问题: 综合阐明土壤微生物和土壤酶对气候变化的响应机制;探究土壤微生物和胞外酶养分耦合机理;深入探究土壤微生物量和土壤酶化学计量特征对气候变化的适应对策.  相似文献   

15.
Currently, forests in the northeastern United States are net sinks of atmospheric carbon. Under future climate change scenarios, the combined effects of climate change and nitrogen deposition on soil decomposition, aboveground processes, and the forest carbon balance remain unclear. We applied carbon stock, flux, and isotope data from field studies at the Harvard forest, Massachusetts, to the ForCent model, which integrates above‐ and belowground processes. The model was able to represent decadal‐scale measurements in soil C stocks, mean residence times, fluxes, and responses to a warming and N addition experiment. The calibrated model then simulated the longer term impacts of warming and N deposition on the distribution of forest carbon stocks. For simulation to 2030, soil warming resulted in a loss of soil organic matter (SOM), decreased allocation to belowground biomass, and gain of aboveground carbon, primarily in large wood, with an overall small gain in total system carbon. Simulated nitrogen addition resulted in a small increase in belowground carbon pools, but a large increase in aboveground large wood pools, resulting in a substantial increase in total system carbon. Combined warming and nitrogen addition simulations showed a net gain in total system carbon, predominately in the aboveground carbon pools, but offset somewhat by losses in SOM. Hence, the impact of continuation of anthropogenic N deposition on the hardwood forests of the northeastern United States may exceed the impact of warming in terms of total ecosystem carbon stocks. However, it should be cautioned that these simulations do not include some climate‐related processes, different responses from changing tree species composition. Despite uncertainties, this effort is among the first to use decadal‐scale observations of soil carbon dynamics and results of multifactor manipulations to calibrate a model that can project integrated aboveground and belowground responses to nitrogen and climate changes for subsequent decades.  相似文献   

16.
全球气候变化背景下生物地球化学循环的响应规律和陆地植物适应对策已受到广泛关注.本文在分析气候变暖和降水变化对不同生态系统植物C∶N∶P的影响、CO2浓度升高对不同光合途径物种元素的影响,以及氮沉降对土壤 植物元素影响的短期和长期效应等基础上,从植物生理特性和土壤有效营养元素变化等方面揭示了其可能存在的内在机理,以期为研究C、N、P化学元素在土壤 植物之间传递与调节机制、陆地生态系统结构和功能,以及生物地球化学元素循环对气候变化的响应提供理论依据.最后提出了该领域研究中存在的问题及对今后研究的展望.  相似文献   

17.
模拟大气氮沉降对中国森林生态系统影响的研究进展   总被引:3,自引:0,他引:3  
人类活动加剧了活性氮的生产和排放,并导致氮沉降日益增加并全球化。目前,人类活动对全球氮循环的干扰已经超出了地球系统安全运行的界限。中国已成为全球氮沉降的高发区域,高氮沉降已经威胁到生态系统的健康和安全,并成为生态文明建设过程中亟待理清和解决的热点问题。对国际上和中国森林生态系统模拟氮沉降研究的概况进行了综述,并从生物学和非生物学两大过程重点阐述模拟氮沉降增加对中国主要森林生态系统影响的研究进展。中国自2000年以后才开始重视大气氮沉降产生的生态环境问题,中国科学院华南植物园在国内森林生态系统模拟氮沉降试验研究上做出了开创性的贡献。模拟氮沉降研究表明,持续高氮输入将会显著改变森林生态系统的结构和功能,并威胁生态系统的健康发展,特别是处于氮沉降热点区域的中国中南部。森林生态系统的氮沉降效应依赖于系统的氮状态、土地利用历史、气候特征、林型和林龄等。最后,对未来的研究提出了一些建议,包括加强长期跟踪研究和不同气候带站点之间的联网研究,特别是在森林生态系统对长期氮沉降响应与适应的过程机制、地下碳氮吸存潜力研究、以及与其他全球变化因子的耦合研究等方面,以期为森林生态系统的可持续发展提供理论基础和管理依据。  相似文献   

18.
The environmental changes arising from nitrogen (N) deposition and precipitation influence soil ecological processes in forest ecosystems. However, the corresponding effects of environmental changes on soil biota are poorly known. Soil nematodes are the important bioindicator of soil environmental change, and their responses play a key role in the feedbacks of terrestrial ecosystems to climate change. Therefore, to explore the responsive mechanisms of soil biota to N deposition and precipitation, soil nematode communities were studied after 3 years of environmental changes by water and/or N addition in a temperate forest of Changbai Mountain, Northeast China. The results showed that water combined with N addition treatment decreased the total nematode abundance in the organic horizon (O), while the opposite trend was found in the mineral horizon (A). Significant reductions in the abundances of fungivores, plant-parasites and omnivores-predators were also found in the water combined with N addition treatment. The significant effect of water interacted with N on the total nematode abundance and trophic groups indicated that the impacts of N on soil nematode communities were mediated by water availability. The synergistic effect of precipitation and N deposition on soil nematode communities was stronger than each effect alone. Structural equation modeling suggested water and N additions had direct effects on soil nematode communities. The feedback of soil nematodes to water and nitrogen addition was highly sensitive and our results indicate that minimal variations in soil properties such as those caused by climate changes can lead to severe changes in soil nematode communities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号