首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
To assess effects of the environmental stress on polyphenol compounds (polyphenols) in plants, the polyphenol contents were investigated in the seedlings of safflower (Carthamus tinctrius L.) and cucumber (Cucumis sativus L.) grown under three types of growth conditions: control; light stress, irradiated with strong light in the visible wavelength range; and light/water stress, irradiated with strong visible light with a limited water supply. The total polyphenol contents and the amounts of the major polyphenols, especially luteolin 7-O-glucoside in safflower cotyledons, and luteolin 7-O-glucoside and luteolin in safflower foliage leaves, increased in response to both stresses. The polyphenol increasing effect of light/water stress was clearly observed in safflower compared to cucumber, suggesting that plants that are resistant to these stresses can accumulate substantial amounts of polyphenols compared to the plants which respond weakly to the stresses.  相似文献   

2.
崇左金花茶花朵和叶片类黄酮UPLC-Q-TOF-MS分析   总被引:1,自引:0,他引:1  
以崇左金花茶(Camellia chuangtsoensis)为材料,利用超高效液相色谱-四极杆-飞行时间质谱(UPLC-Q-TOF-MS)联用技术定性定量分析其花朵(花瓣、雄蕊)和叶片(老叶、新叶)中类黄酮成分与含量。结果表明,崇左金花茶中共检测到14种类黄酮成分,木犀草素、木犀草素-7-O-芸香糖苷、槲皮素-3,7-O-二葡萄糖苷、芸香柚皮苷、圣草素和染料木苷为山茶属金花茶组植物中首次发现,其中槲皮素-3,7-O-二葡萄糖苷、芸香柚皮苷、圣草素和染料木苷主要存在于花朵中,木犀草素和木犀草素-7-O-芸香糖苷在花朵中含量高于叶片,雄蕊中高于花瓣;槲皮素-3-O-葡萄糖苷、槲皮素-7-O-葡萄糖苷、槲皮素-3-O-芸香糖苷和山柰酚-3-O-葡萄糖苷为金花茶组植物叶片中首次发现,其叶片中含量远低于花朵,老叶中远低于新叶,雄蕊中远低于花瓣;儿茶素和表儿茶素在花朵中含量高于叶片,雄蕊中高于花瓣;槲皮素和山萘酚在花朵和叶片中含量均较低。崇左金花茶花瓣和雄蕊中含量较高的类黄酮为儿茶素类、木犀草素类和槲皮素类,主要是表儿茶素、木犀草素和槲皮素-3-O-葡萄糖苷;叶片中为儿茶素类和木犀草素类,主要是表儿茶素、木犀草素和木犀草素-7-O-芸香糖苷。崇左金花茶花瓣和雄蕊中儿茶素类、木犀草素类及类黄酮总量均高于叶片,且雄蕊高于花瓣;花瓣和雄蕊中槲皮素类远高于叶片,且花瓣中远高于雄蕊。  相似文献   

3.
Flavonoids have recently been suggested to have the potential to serve as antioxidants other than effective UV attenuators in photoprotection. Here, we tested the hypothesis that flavonoids accumulate in response to “excess light” in the presence or in the absence of UV radiation. In a UV exclusion experiment, we grew Ligustrum vulgare plants outdoors under 30% or 100% sunlight irradiance, by cutting-off the whole UV waveband. These plants were also exposed to UV irradiance or supplied with 125 mM NaCl at the root zone. Leaves of plants under 100% sunlight irradiance suffered from excess light, which was exacerbated greatly by root zone salinity stress. Salinity stress repressed the activities of antioxidant enzymes, particularly in full sunlight, and led to severe leaf oxidative damage. Dihydroxy B-ring-substituted flavonoids, namely quercetin 3-O- and luteolin 7-O-glycosides, accumulated steeply in response to sunlight irradiance in the absence of UV radiation. UV radiation and root zone NaCl increased, to a similar degree, the concentration of these flavonoids, which have a great potential to scavenge various forms of reactive oxygen. Treatment-induced changes in leaf phenylpropanoid concentration affected antioxidant activities to a greater extent than the UV-screening capacities of leaf extracts. Early responses to an abrupt increase in sunlight irradiance included a steep increase in the concentrations of quercetin derivatives and cyanidin 3-O-glucoside, with the latter negligibly absorbing in the UV-spectral region. In contrast, effective UV attenuators, such as hydroxycinnamates and monohydroxy B-ring flavonoids, were unresponsive to the light treatments. Overall, these findings lead to the hypothesis that flavonoids may have an important antioxidant function in photoprotection. This hypothesis is further corroborated by the large distribution of quercetin and luteolin derivatives in the vacuoles of mesophyll, not only in the corresponding compartments of epidermal cells, but also in full sunlight-treated leaves in the absence of UV radiation. Future experiments aimed at evaluating the relative contribution of flavonoids within the complex antioxidant defense systems operating in the leaf are needed to help conclusively address the relevance of their antioxidant functions in photoprotection.  相似文献   

4.
在盐胁迫下,采用盆栽方法研究AM真菌对红花植株耐盐生理指标的影响,以不接种为对照。结果表明,在0、0.1%和0.2%浓度NaCl胁迫下,AM真菌促进红花幼苗的生长,接种真菌的红花叶片SOD和CAT活性、脯氨酸和可溶性蛋白的含量都高于不接种处理的,叶片细胞质膜透性和MDA含量则低于不接种处理的,结果证明AM真菌可以提高植物的耐盐性。  相似文献   

5.
6.
The present study evaluates the effects of severe drought stress on the content of phenolic compounds in olive leaves, namely hydroxytyrosol, tyrosol, p-hydroxybenzoic acid, catechin, luteolin 7-O-rutinoside, luteolin 7-O-glucoside, apigenin 7-O-glucoside, quercetin, apigenin, pinoresinol, oleuropein and verbascoside in greenhouse-grown plantlets. The results showed that oleuropein, verbascoside, luteolin 7-O-glucoside and apigenin 7-O-glucoside were the most important phenolic compound of stressed olive plants and can represent up to 84% of the total amount of the identified phenolic compounds. Application of drought stress caused a significant increase in the level of oleuropein (87%), verbascoside (78%), luteolin 7-O-glucoside (72%) and apigenin 7-O-glucoside (85%), when compared to the control. The elevated values of these phenolic compounds can help controlling the water status of olive plants and avoiding serious oxidative damage induced by water deficit stress. To our knowledge, this is the first report to show the boost in the concentrations of verbascoside, luteolin 7-O-glucoside and apigenin 7-O-glucoside in the leaves of olive trees after water deficit stress.  相似文献   

7.
Free radical mediated oxidative stress plays a crucial role in the pathogenesis of cataract and the present study was to determine the efficacy of luteolin in preventing selenite induced oxidative stress and cataractogenesis in vitro. Luteolin is a bioactive flavonoid, isolated and characterized from the leaves of Vitex negundo. Lenses were extracted from Sprague-Dawley strain rats and were organ cultured in DMEM medium. They were divided into three groups with eight lenses in each group as follows: lenses cultured in normal medium (G I), supplemented with 0.1mM sodium selenite (G II) and sodium selenite and 2 μg/ml luteolin (G III). Treatment was from the second to fifth day, while selenite administration was done on the third day. After the experimental period, lenses were taken out and various parameters were studied. The antioxidant potential of luteolin was assessed by 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging activity. In the selenite induced group, morphological examination of the lenses showed dense cortical opacification and vacuolization. Biochemical examinations revealed a significant decrease in activities of antioxidant enzymes and enzymes of the glutathione system. Additionally decreased glutathione level and increased reactive oxygen species (ROS) and thiobarbituric acid reactive substances (TBARS) were observed. Luteolin treatment abated selenite induced oxidative stress and cataractogenesis by maintaining antioxidant status, reducing ROS generation and lipid peroxidation in the lens. These finding demonstrated the anticataractogenic effect of luteolin by virtue of its antioxidant property, which has been reported in this paper for the first time.  相似文献   

8.
To assess the possible physiological function of chlorogenic acid (CGA, 3-O-caffeoylquinic acid) in vivo , we characterized the free radical scavenging properties of pure phenylpropanoids and leaf extracts against two free radicals, superoxide and the 2,2'-azinobis(3-ethylbenzothiazoline-6-sulphonic acid) (ABTS) radical cation. CGA was found to be a highly efficient scavenger of these free radicals, surpassing the activity of all other phenylpropanoids tested, as well as the 'classical' antioxidant ascorbate. Seasonal differences in the leaf content of CGA were examined in field populations of the broadleaf evergreen Mahonia repens growing in different light environments. Leaves of fully sun-exposed plants contained significantly more (74 ± 10 mmol m–2) CGA in winter than leaves from plants growing under deeply shaded conditions (17 ± 2 mmol m–2). Sun-acclimated, but not shade-acclimated, leaves also produced high levels of anthocyanins in winter, suggesting a simultaneous increase in carbon flow through the phenylpropanoid and flavonoid pathways in response to high light and seasonal low temperature stress. In summer, high light-acclimated leaves contained ≈ 2-fold less CGA than in winter, whereas CGA levels were similar between seasons in shaded leaves. Consistent with the strong scavenging capacity of CGA measured in vitro , a linear correlation was observed between CGA content and the antioxidant activity of leaf extracts in both scavenging assays. On the basis of these results, we propose that CGA is a powerful hydrogen-donating antioxidant that may play an important role in mitigating the effects of oxidative stress in plants.  相似文献   

9.
以较耐盐花生品种‘花育25’、‘鲁花12’和盐敏感品种‘海花1’、‘花育20’为材料,采用盆栽试验,设置0、1.0、2.0、3.0 g/kg土壤NaCl胁迫浓度梯度,测定其净光合速率、表观量子效率、气孔导度等光合特性,以及抗氧化酶活性和渗透调节物质含量等指标,明确NaCl胁迫条件下不同耐盐性花生品种光合和生理生化特性的适应特征。结果表明:(1)NaCl胁迫明显抑制各品种花生叶片光合作用,净光合速率随盐胁迫浓度的升高呈明显降低的趋势。(2)各品种花生叶片净光合速率均先随光照强度的增强而升高,当光强达到一定数值时趋于平稳;光补偿点和光饱点因品种和盐胁迫浓度差异较大,较高的盐胁迫浓度使叶片光补偿点升高,盐敏感品种的光饱和点降低。(3)盐胁迫条件下,各品种叶片表观量子效率和最大净光合速率均随盐胁迫强度的增加呈显著降低趋势,盐敏感品种利用弱光的能力在低盐胁迫下强于耐盐品种,其最大净光合速率在较高盐胁迫浓度(3.0 g/kg)下明显低于耐盐品种,但两类品种的叶片表观量子效率降幅相近(78.65%~88.00%)。(4)在NaCl胁迫下,耐盐品种叶片自由水含量显著高于盐敏感品种;在2.0~3.0 g/kg NaCl胁迫下,耐盐品种叶片SOD、CAT、POD活性和MDA含量的升降幅度均低于盐敏感品种;耐盐品种在NaCl浓度低于2.0 g/kg时的抗氧化能力明显高于盐敏感品种。研究发现,盐胁迫下花生品种抗盐耐逆的主要生理响应特征是提高光补偿点和最大净光合速率,增强叶片持水能力和物质代谢能力,以及提升抗氧化和渗透调节能力。  相似文献   

10.
Both reactive oxygen- and nitrogen-derived reactive species play important roles in physiological and pathophysiological conditions. Flavones, luteolin and luteolin-7-O-glucoside along with a rich plant source of both flavones, namely dandelion (Taraxacum officinale) flower extract were studied for antioxidant activity in different in vitro model systems. In this current study, luteolin and luteolin-7-O-glucoside at concentrations lower than 20 microM, significantly (p < 0.05) suppressed the productions of nitric oxide and prostaglandin E2 (PGE2) in bacterial lipopolysaccharide activated-mouse macrophage RAW264.7 cells without introducing cytotoxicity. The inhibitory effects were further attributed to the suppression of both inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) protein expression, and not reduced enzymatic activity. Similar suppression for both inducible enzymes was also found with the presence of dandelion flower extract, specifically, the ethyl acetate fraction of dandelion flower extract which contained 10% luteolin and luteolin-7-O-glucoside.  相似文献   

11.
通过对冬季室内和室外分别生长30d的冬小麦在节律性和非节律性融冻变温过程中抗氧化酶活力和渗透调解物含量变化的分析,揭示其在冬小麦适应日融冻胁迫中的作用。结果表明:生育期不同的室内(均温11℃,拔节期)和室外(均温1℃,分蘖静滞期)冬小麦叶片抗氧化酶和脯氨酸对日光强和温度节律变化的响应趋势是一致的,即随日出而增高,中午气温较高时最高,日落而降低;在非节律性变温处理中,室外冬小麦抗氧化酶活力和脯氨酸含量随气温上升至18℃而增高,气温迅速下降到-2.5℃而降低,经历冻-融-冻胁迫冬小麦生长良好。室内冬小麦抗氧化酶活力随气温降低到-6℃,叶片结冻,迅速下降,气温升高到18℃而增加,经历融-冻-融胁迫后植株死亡;室外冬小麦光合速率(Pn)和比室内的低,而抗氧化酶活力高于室内;冬小麦快速提高抗氧化酶活力和脯氨酸含量,抑制氧自由基积累、维护细胞水分平衡,这在适应冬季节律性融冻胁迫中起重要作用;暖冬中冬小麦较高的Pn和较低的抗氧化酶活力可能是引起冬小麦在"倒春寒"中死亡的生理原因。  相似文献   

12.
It has been shown that penconazole (PEN) acts as an endogenous signal molecule responsible for inducing stress tolerance in plants. The effect of PEN (15?mg?l–1) and sodium chloride (0, 100, and 200 mM NaCl) on some biochemical and molecular responses of safflower was studied. Results revealed that chlorophylls and total soluble protein contents decreased under salinity, however total carotenoid, anthocyanin, flavonoid, and carbohydrate contents increased as well as SOS1 and NHX1 genes expression. The exogenous PEN had a positive effect on chlorophylls, carotenoid, anthocyanin, flavonoid, soluble protein and carbohydrate contents. In addition, RT-qPCR analysis showed that the exogenous PEN induced expression of SOS1 and NHX1 genes in both salt-treated and untreated plants. Our data indicate that PEN helps safflower plants to better cope with salt stress. The results can provide new insights to better realizing the responsible mechanisms to regulate salinity resistance in safflower. PEN can be considered in order to ameliorate salinity effects, due to the low price and their availability.  相似文献   

13.
海滨沙滩单叶蔓荆对沙埋的生理响应特征   总被引:1,自引:0,他引:1  
周瑞莲  王进  杨淑琴  杨树德 《生态学报》2013,33(6):1973-1981
海滨沙滩单叶蔓荆(Vitex trifolia L.var.simplicifolia)是优良的抗沙埋地被植物.以烟台海岸沙地单叶蔓荆为材料,通过不同厚度沙埋过程中沙上和沙下叶片抗逆生理指标的测定以揭示其抗沙埋生理调控机制.结果表明,轻度和中度沙埋5d,成株和幼株整株叶片细胞膜透性增大、POD和SOD活力增高、MDA和脯氨酸含量和叶片相对含水量(RWC)增加、可溶性糖含量下降.但同株沙上叶片细胞膜透性、MDA含量、SOD和POD活力和可溶性糖含量均高于沙下,而沙上叶片脯氨酸含量低于沙下叶片.在轻度和中度沙埋lOd,沙上叶片细胞膜透性、MDA和可溶性糖含量、叶片POD活力降低,叶片SOD活力仍有小幅度增高,但脯氨酸含量增加,沙上叶片生长旺盛.研究表明,沙埋下叶片抗氧化酶活力和脯氨酸含量与细胞膜透性和膜脂过氧化成正相关.沙埋使植株上部叶片接近沙表面而经受干旱和地面热辐射胁迫引起细胞膜脂过氧化加剧和细胞膜透性加大.同时沙埋也使沙下叶片遭遇黑暗和缺氧胁迫诱导细胞内膜脂过氧化,但也激活了叶片抗氧化酶保护系统和叶片脯氨酸的积累抑制细胞膜脂过氧化维护细胞膜的稳定.因此在沙埋过程中,叶片快速响应沙埋胁迫激活叶片抗氧化酶系统抑制膜脂过氧化作用维持氧自由基和抗氧化酶系统的动态平衡在单叶蔓荆适应轻度和中度沙埋,维护沙上叶片旺盛生长中起重要作用,也是重度全埋下沙下植株茎顶端能快速延伸弯曲生长最后顶出沙面再生的主要生理保护原因.  相似文献   

14.
该研究以耐热型水稻品种Nagina22和热敏型水稻品种YR343为供试材料,采用盆栽试验,设置喷施清水+常温处理(NT0)、喷施清水+穗分化期高温胁迫(HT0),以及分别喷施5、10、15、20 mmol·L-1外源海藻糖+高温胁迫(分别记为HT1、HT2、HT3、HT4)共6个处理,分析外源海藻糖对高温胁迫下穗分化期水稻叶片叶绿素含量、光合气体交换参数、抗氧化酶活性、渗透调节物质含量、活性氧含量等生理特性,以及籽粒产量及其构成因素的影响,为水稻抗热栽培和耐热品种的选育提供理论依据。结果表明:(1)在高温胁迫下水稻穗分化期,2个水稻品种叶片的叶绿素含量、光合气体交换参数及渗透调节物质含量均降低,叶片MDA和H2O2含量以及■的产生速率均上升,叶片抗氧化酶活性呈先增后降的趋势,最终显示水稻籽粒产量及其构成因素显著下降。(2)喷施外源海藻糖能显著增加高温胁迫下穗分化期水稻的每穗粒数、千粒重和结实率,从而提高籽粒产量,其中弱势粒千粒重和结实率的增幅高于强势粒,外源海藻糖最适喷施浓度为15 mmol·L-1...  相似文献   

15.
The flavonoid (baicalin, wogonoside, luteolin, luteolin-7-glucoside) and verbascoside contents of Scutellaria altissima in both shoot cultures, and the shoots and roots of micropropagated plants grown in the greenhouse for 12 weeks or in the field for 2 years were determined. The level of secondary metabolites was found to be strongly affected by the age and type of plant organ. A comparative analysis of S. altissima plants propagated in vitro and from seeds revealed no differences in the level of secondary metabolites when plants of the same age were studied. The antioxidant potential of methanolic extracts from shoot cultures, and the shoots and roots of S. altissima plants propagated in vitro, were evaluated using ABTS radical scavenging, FRAP metal reduction power and the lipid peroxidation test, in relation to the content of baicalin, wogonoside, verbascoside, total phenolic and total flavonoid compounds. Extracts from the roots of field-grown regenerated plants at the flowering stage were found to possess the strongest antioxidant activity. Correlation analysis revealed that the antioxidant activity of extracts correlated most closely with their total phenolic content estimated by the Folin-Ciocalteu method.  相似文献   

16.
遮阴对浙江三叶青生理生化及总黄酮的影响   总被引:2,自引:0,他引:2  
为探究抗癌药物浙江三叶青在不同遮阴处理下其有效成分总黄酮含量及生理生化响应,该研究设置5个光照梯度(全光照CK、遮阴30%、50%、70%、90%),以三叶青二年生扦插苗为材料,处理6个月后,测定三叶青在不同遮阴梯度条件下的生长指标、生化指标以及不同部位(叶片和块根)的总黄酮含量。结果表明:遮阴70%的处理中植株长势最佳,随着光照强度的减弱,三叶青生物量呈现先增高后降低趋势;比叶重呈降低趋势;叶片中的可溶性蛋白(SP)、游离脯氨酸(FP)和超氧化物歧化酶(SOD)含量均在全光照下最高,遮阴70%时最低,分别比全光照降低了33.36%、17.22%、46.88%,表现出光胁迫特点;总黄酮含量为叶片块根,且均以遮阴70%下含量最高,从整体来看,总黄酮含量随着遮阴度的增大而呈现先增加后降低的趋势。这表明光照强度是影响浙江三叶青生长及有效成分积累的重要因素,且高光强在一定程度上抑制三叶青植株的生长,适当遮阴对三叶青植株的生长起促进作用,但块根和叶片中的总黄酮含量对光强的响应却不同,这为今后科学栽培种植及合理有效开发三叶青提供了科学依据。  相似文献   

17.
Summary Sand culture technique was used to study the effect of irrigation with saline nutrient solutions on the water and mineral elements content of leaves of safflower, sunflower, wheat and radish. Saline culture solutions were prepared by adding NaCl and CaCl2 to Pfeffer's nutrient solution. The water content of wheat leaves was not affected by salinity, whereas that of leaves of safflower, sunflower and radish was significantly decreased at the high salinity level (6000 ppm) only.Sodium and calcium content of all test plants was generally increased progressively with salinity. The total nitrogen content of safflower and sunflower leaves was significantly increased, whereas that of wheat and radish leaves was almost significantly decreased by salinity. Salinity induced nonsignificant effect on phosphorus content of all test plants. Potassium content of the test plants was significantly reduced by salinity. Magnesium content of safflower and sunflower was significantly decreased by salinity, but the effect was non-significant in case of wheat and radish leaves. re]19760625  相似文献   

18.
Carthamus tinctorius L., rich in antioxidant compounds, is a herbal medicine. Biochemical mechanisms of adaptation to salinity stress in safflower are still poorly understood at the cellular level. For this purpose, callus cultures of four different genotypes of safflower were used in this study to evaluate changes in their biochemical (ionic content, proline, and glycine betaine), total phenolics content (TPC), total flavonoids content (TFD), antioxidant responses (2,2-diphenyl-1-picrylhydrazyl: DPPH assay and carotenoid content), and lipid peroxidation (malon dialdehyde content: MDA) under salinity stress. The calluses derived from hypocotyls were exposed to in vitro salt stress at different concentrations of sodium chloride (0, 100, 200, and 300 mM). A reducing trend was observed in K+ and carotenoid reserves of the calluses with increasing NaCl concentration while an increasing trend was observed in Na+ content, proline, MDA, TPC, TFD, and DPPH activity under the same conditions. Callus glycine betaine content was found to decrease in the medium containing 100 mM NaCl but increased beyond this concentration up to 300 mM NaCl. Positive and significant correlations were recognized between DPPH and total phenolics as well as DPPH and total flavonoid contents, demonstrating that phenolics are the main contributors to the potential antioxidant activity of safflower at the cellular level. Overall, the salt-tolerant genotypes of Mex.2-137 and Mex.2-138 were found capable of being processed for the production of secondary metabolites via NaCl elicitation.  相似文献   

19.
This study investigated whether uniconazole confers drought tolerance to soybean and if such tolerance is correlated with changes in photosynthesis, hormones and antioxidant system of leaves. Soybean plants were foliar treated with uniconazole at 50 mg L-1 at the beginning of bloom and then exposed to water deficit stress at pod initiation for 7 d. Uniconazole promoted biomass accumulation and seed yield under both water conditions. Plants treated with uniconazole showed higher leaf water potential only in water-stressed condition. Water stress decreased the chlorophyll content and photosynthetic rate, but those of uniconazole-treated plants were higher than the stressed control. Uniconazole increased the maximum quantum yield of photosystemand ribulose-1,5-bisphosphate carboxylase/oxygenase activity of water-stressed plants. Water stress decreased partitioning of assimilated 14C from labeled leaf to the other parts of the plant. In contrast, uniconazole enhanced translocation of assimilated 14C from labeled leaves to the other parts, except stems, regardless of water treatment. Uniconazole-treated plants contained less GA3, GA4 and ABA under well-watered condition than untreated plants, while the IAA and zeatin levels were increased substantially under both water conditions, and ABA concentration was also increased under water stressed condition. Under water-stressed conditions, uniconazole increased the content of proline and soluble sugars, and the activities of superoxide dismutase and peroxidase in soybean leaves but not the malondialdehyde content or electrical conductivity. These results suggest that uniconazole-induced tolerance to water deficit stress in soybean was related to the changes of photosynthesis, hormones and antioxidant system of leaves.  相似文献   

20.
以一年生钩藤实生苗为试材,通过连续土壤控水12 d盆栽试验,研究持续性土壤自然干旱对钩藤幼苗生长、抗逆生理指标及其主要药用成分含量的影响。结果表明:(1)随着干旱胁迫时间的延长,钩藤根和茎叶生物量以及叶片相对含水量(RWC)显著持续下降(P0.05),而根冠比、叶片丙二醛(MDA)含量及相对电导率(REC)逐渐升高。(2)随着干旱胁迫时间的延长,钩藤叶片叶绿素a、b含量先增高后下降,叶片超氧化物歧化酶(SOD)、过氧化物酶(POD)和过氧化氢酶(CAT)活性先上升后下降,且POD活性最先达到峰值,CAT活性增幅最大;叶片中脯氨酸(Pro)、可溶性糖(SS)和可溶性蛋白(SP)含量逐渐升高,且Pro表现出更强的渗透调节能力。(3)钩藤幼苗叶片、主茎和带钩茎枝中钩藤碱与异钩藤碱含量随着干旱胁迫时间的延长而呈先增高后下降的趋势,响应时间先后顺序依次为叶片、主茎、带钩茎枝,生物碱含量由高到低依次为带钩茎枝、叶片、主茎。研究发现,在土壤持续自然干旱条件下,钩藤幼苗生长受到一定影响,但植株能通过提高其抗氧化酶活性和积累渗透调节物质来提高吸水和保水能力,有效抵御干旱逆境;且土壤自然干旱胁迫4~8 d有利于主要药效成分钩藤碱与异钩藤碱的积累;土壤相对含水量在42%~53%时,钩藤幼苗耐旱性较强且钩藤碱与异钩藤碱含量较高。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号