首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 937 毫秒
1.
We analyzed variations in chloroplast DNA (cpDNA) in the widespread herbaceous species Hosta sieboldiana and Hosta albomarginata across large portions of their geographic ranges in the Japanese archipelago. Our objective was to compare the phylogeographic histories and phylogeographic structures of the two congeneric species in the Japanese archipelago. The location of the study is Japanese archipelago. We sequenced 1380 bp of noncoding cpDNA from 45 populations of H. sieboldiana (= 362) and 55 populations of H. albomarginata (= 436) to assess genetic variations within and among populations across almost the entire distributions of the species in Japan. Extant patterns of geographic structure were analyzed using statistical parsimony networks and spatial analysis of molecular variance (SAMOVA). We also used Monmonier's algorithm to detect genetic barriers between regions. Relationships between the populations were examined using a neighbor‐joining (NJ) method. Four haplotypes were found for H. sieboldiana, whereas eight haplotypes were identified for H. albomarginata. Total genetic haplotype diversity (hT) and within‐population haplotype diversity (hS) for H. sieboldiana were 0.352 and 0.040, respectively, while the values for Halbomarginata were 0.529 and 0.085, respectively. The population differentiations (GST) for H. sieboldiana and Halbomarginata were 0.839 and 0.886, respectively. The SAMOVA analysis revealed two clusters in H. sieboldiana and four clusters in H. albomarginata. Differentiations between and among the clusters were supported by the BARRIER analysis and the NJ tree. We detected differences in the population genetic structure between the two species. We found that H. sieboldiana had lower haplotype diversity than H. albomarginata. These results may be partially explained by the difference in ecological habitats and geographic distributions between the species. Hosta albomarginata is more widely distributed than Hsieboldiana in East Asia including Russia, and this large distribution range would enable more chances to intraspecific gene flow.  相似文献   

2.
Little is known about species diversification within the deserts of Central Asia. For example, the degree of lineage divergence and timing of population differentiation, as well as potential biogeographic barriers driving diversification, are nearly unknown. Here, we analysed a multi‐locus data set for a widespread sand scorpion (Mesobuthus gorelovi) to evaluate cryptic species diversity and phylogeographic patterns across the Karakum and Kyzylkum deserts. We also combined these data with previously published sequence data to test for a signal of co‐diversification. A consensus species delimitation approach indicated that the widespread M. gorelovi is likely composed of up to five distinct species that began to diversify at the Miocene–Pliocene boundary. We observed shared patterns of lineage divergence across the Amu Darya River region in three scorpion taxa and found support for a shared history of assemblage diversification across this biogeographic barrier. Thus, major river systems appear to facilitate diversification among desert scorpions.  相似文献   

3.
The Seychelles is a remarkably interesting archipelago for evolutionary studies, but only recently have molecular markers been used to explore its biogeographic patterns. Here we used morphological and molecular data to examine diversity and phylogenetic relationships of two endemic skink sister‐species from this archipelago: Trachylepis sechellensis and Trachylepis wrightii. Mitochondrial DNA genealogy rendered a monophyletic T. wrightii nested within a paraphyletic T. sechellensis, whereas nuclear DNA sequences from five unlinked markers reflected the accepted taxonomy. Hybridization and massive mtDNA introgression leading to the complete replacement of the native mtDNA lineage of T. sechellensis in some of the islands were invoked to explain this result, and morphological variation also seemed to reflect this pattern of reticulation. A Mio‐Pliocene divergence between both species is suggested. Multilocus molecular data were used to uncover biogeographic patterns within the archipelago, which reflected shared patterns with other co‐distributed lizard taxa; specifically a north–south marked structure, a close relationship between populations from Fregate and the southern islands, and a detectable isolation within the southern group, between Mahé, and Silhouette and North Islands. Gene flow from these latter islands towards the northern group was also suggested. These results add to the growing body of evidence of the influence of geographic distance and sea‐level oscillations in shaping the genetic structure of Seychellois taxa and of the existence of common biogeographic patterns across the archipelago.  相似文献   

4.
The criteria for species delimitation in birds have long been debated, and several recent studies have proposed new methods for such delimitation. On one side, there is a large consensus of investigators who believe that the only evidence that can be used to delimit species is molecular phylogenetics, and with increasing numbers of markers to gain better support, whereas on the other, there are investigators adopting alternative approaches based largely on phenotypic differences, including in morphology and communication signals. Yet, these methods have little to say about rapid differentiation in specific traits shown to be important in reproductive isolation. Here, we examine variation in phenotypic (morphology, plumage, and song) and genotypic (mitochondrial and nuclear DNA) traits among populations of yellow‐rumped tinkerbird Pogoniulus bilineatus in East Africa. Strikingly, song divergence between the P. b. fischeri subspecies from Kenya and Zanzibar and P. b. bilineatus from Tanzania is discordant with genetic distance, having occurred over a short time frame, and playback experiments show that adjacent populations of P. b. bilineatus and P. b. fischeri do not recognize one another's songs. While such rapid divergence might suggest a founder effect following invasion of Zanzibar, molecular evidence suggests otherwise, with insular P. b. fischeri nested within mainland P. b. fischeri. Populations from the Eastern Arc Mountains are genetically more distant, yet share the same song with P. b. bilineatus from Coastal Tanzania and Southern Africa, suggesting they would interbreed. We believe investigators ought to examine potentially rapid divergence in traits important in species recognition and sexual selection when delimiting species, rather than relying entirely on arbitrary quantitative characters or molecular markers.  相似文献   

5.
Acoustic signals for mating are important traits that could drive population differentiation and speciation. Ecology may play a role in acoustic divergence through direct selection (e.g., local adaptation to abiotic environment), constraint of correlated traits (e.g., acoustic traits linked to another trait under selection), and/or interspecific competition (e.g., character displacement). However, genetic drift alone can also drive acoustic divergence. It is not always easy to differentiate the role of ecology versus drift in acoustic divergence. In this study, we tested the role of ecology and drift in shaping geographic variation in the advertisement calls of Microhyla fissipes. We examined three predictions based on ecological processes: (1) the correlation between temperature and call properties across M. fissipes populations; (2) the correlation between call properties and body size across M. fissipes populations; and (3) reproductive character displacement (RCD) in call properties between M. fissipes populations that are sympatric with and allopatric to a congener M. heymonsi. To test genetic drift, we examined correlations among call divergence, geographic distance, and genetic distance across M. fissipes populations. We recorded the advertisement calls from 11 populations of M. fissipes in Taiwan, five of which are sympatrically distributed with M. heymonsi. We found geographic variation in both temporal and spectral properties of the advertisement calls of M. fissipes. However, the call properties were not correlated with local temperature or the callers' body size. Furthermore, we did not detect RCD. By contrast, call divergence, geographic distance, and genetic distance between M. fissipes populations were all positively correlated. The comparisons between phenotypic Qst (Pst) and Fst values did not show significant differences, suggesting a role of drift. We concluded that genetic drift, rather than ecological processes, is the more likely driver for the geographic variation in the advertisement calls of M. fissipes.  相似文献   

6.
Deep sympatric intraspecific divergence in mtDNA may reflect cryptic species or formerly distinct lineages in the process of remerging. Preliminary results from DNA barcoding of Scandinavian butterflies and moths showed high intraspecific sequence variation in the autumnal moth, Epirrita autumnata. In this study, specimens from different localities in Norway and some samples from Finland and Scotland, with two congeneric species as outgroups, were sequenced with mitochondrial and nuclear markers to resolve the discrepancy found between mtDNA divergence and present species‐level taxonomy. We found five COI sub‐clades within the E. autumnata complex, most of which were sympatric and with little geographic structure. Nuclear markers (ITS2 and Wingless) showed little variation and gave no indications that E. autumnata comprises more than one species. The samples were screened with primers for Wolbachia outer surface gene (wsp) and 12% of the samples tested positive. Two Wolbachia strains were associated with different mtDNA sub‐clades within E. autumnata, which may indicate indirect selection/selective sweeps on haplotypes. Our results demonstrate that deep mtDNA divergences are not synonymous with cryptic speciation and this has important implications for the use of mtDNA in species delimitation, like in DNA barcoding.  相似文献   

7.
The current ease of obtaining thousands of molecular markers challenges the notion that full phylogenetic concordance, as proposed by phylogenetic species concepts, is a requirement for defining species delimitations. Indeed, the presence of genomic islands of divergence, which may be the cause, or in some cases the consequence, of speciation, precludes concordance. Here, we explore this issue using thousands of RAD markers on two sister species of surgeonfishes (Teleostei: Acanthuridae), Zebrasoma flavescens and Z. scopas, and several populations within each species. Species are readily distinguished based on their colors (solid yellow and solid brown, respectively), yet populations and species are neither distinguishable using mitochondrial markers (cytochrome c oxidase 1), nor using 5193 SNPs (pairwise Φst = 0.034). In contrast, when using outlier loci, some of them presumably under selection, species delimitations, and strong population structure follow recognized taxonomic positions (pairwise Φst = 0.326). Species and population delimitation differences based on neutral and selected markers are likely due to local adaptation, thus being consistent with the idea that these genomic islands of divergence arose as a consequence of isolation. These findings, which are not unique, raise the question of a potentially important pathway of divergence based on local adaptation that is only evident when looking at thousands of loci.  相似文献   

8.
Recent empirical work on cloud forest‐adapted species supports the role of both old divergences across major geographical areas and more recent divergences attributed to Pleistocene climate changes. The shrub Moussonia deppeana is distributed in northern Mesoamerica, with geographically disjunct populations. Based on sampling throughout the species range and employing plastid and nuclear markers, we (i) test whether the fragmented distribution is correlated with main evolutionary lineages, (ii) reconstruct its phylogeographical history to infer the history of cloud forest in northern Mesoamerica and (iii) evaluate a set of refugia/vicariance scenarios for the region and demographic patterns of the populations whose ranges expanded and tracked cloud forest conditions during the Last Glacial Maximum. We found a deep evolutionary split in M. deppeana about 6–3 Ma, which could be consistent with a Pliocene divergence. Comparison of variation in plastid and nuclear markers revealed several lineages mostly congruent with their isolated geographical distribution and restricted gene flow among groups. Results of species distribution modelling and coalescent simulations fit a model of multiple refugia diverging during interglacial cycles. The demographic history of M. deppeana is not consistent with an expanding–contracting cloud forest archipelago model during the Last Glacial Maximum. Instead, our data suggest that populations persisted across the geographical range throughout the glacial cycles, and experienced isolation and divergence during interglacial periods.  相似文献   

9.
Determining the boundaries between species and deciding when to describe new species are challenging practices that are particularly difficult in groups with high levels of geographic variation. The coast horned lizards (Phrynosoma blainvillii, Phrynosoma cerroense and P. coronatum) have an extensive geographic distribution spanning many distinctive ecological regions ranging from northern California to the Cape Region of Baja California, Mexico, and populations differ substantially with respect to external morphology across much of this range. The number of taxa recognized in the group has been reevaluated by herpetologists over 20 times during the last 180 years, and typically without the aid of explicit species delimitation methods, resulting in a turbulent taxonomy containing anywhere from one to seven taxa. In this study, we evaluate taxonomic trends through time by ranking 15 of these species delimitation models (SDMs) using coalescent analyses of nuclear loci and SNPs in a Bayesian model comparison framework. Species delimitation models containing more species were generally favoured by Bayesian model selection; however, several three‐species models outperformed some four‐ and five‐species SDMs, and the top‐ranked model, which contained five species, outperformed all SDMs containing six species. Model performance peaked in the 1950s based on marginal likelihoods estimated from nuclear loci and SNPs. Not surprisingly, SDMs based on genetic data outperformed morphological taxonomies when using genetic data alone to evaluate models. The de novo estimation of population structure favours a three‐population model that matches the currently recognized integrative taxonomy containing three species. We discuss why Bayesian model selection might favour models containing more species, and why recognizing more than three species might be warranted.  相似文献   

10.
The genus R haphithamnus (Verbenaceae) consists of two species, one in South America and another endemic to the Juan Fernández archipelago, Chile. The genus represents an example of anagenetic speciation in which the island populations have diverged from their colonizing ancestors to the point where they are recognized as a distinct species. The island species R haphithamnus venustus differs from the continental R . spinosus primarily by floral traits associated with adaptation to hummingbird pollination. Two molecular markers, amplified fragment length polymorphisms (AFLPs) and microsatellites, were used to estimate divergence between the continental and insular species, and to compare diversity in the two species. The comparable or greater diversity in the insular species observed in some diversity indices of AFLPs would support the hypothesis that during the course of anagenetic speciation it has recovered from any reduction of genetic diversity associated with colonization of the archipelago. This pattern of comparable or higher diversity in insular species is seen with other instances of anagenetic speciation in the Juan Fernández archipelago. By contrast, the lower genetic diversity in the insular R . venustus found in microsatellites is likely to be the result of a founder effect from the original colonization of the archipelago; prior molecular studies suggest recent colonization of the Juan Fernández archipelago by R haphithamnus . The seeming non‐concordance between the present results and the widely accepted biogeography of R haphithamnus inferred from other data is discussed and an explanation is presented.  相似文献   

11.
Species interactions, and their fitness consequences, vary across the geographic range of a coevolutionary relationship. This spatial heterogeneity in reciprocal selection is predicted to generate a geographic mosaic of local adaptation, wherein coevolutionary traits are phenotypically variable from one location to the next. Under this framework, allopatric populations should lack variation in coevolutionary traits due to the absence of reciprocal selection. We examine phenotypic variation in tetrodotoxin (TTX) toxicity of the Rough‐Skinned Newt (Taricha granulosa) in regions of allopatry with its TTX‐resistant predator, the Common Garter Snake (Thamnophis sirtalis). In sympatry, geographic patterns of phenotypic exaggeration in toxicity and toxin‐resistance are closely correlated in prey and predator, implying that reciprocal selection drives phenotypic variation in coevolutionary traits. Therefore, in allopatry with TTX‐resistant predators, we expect to find uniformly low levels of newt toxicity. We characterized TTX toxicity in northwestern North America, including the Alaskan panhandle where Ta. granulosa occur in allopatry with Th. sirtalis. First, we used microsatellite markers to estimate population genetic structure and determine if any phenotypic variation in toxicity might be explained by historical divergence. We found northern populations of Ta. granulosa generally lacked population structure in a pattern consistent with northern range expansion after the Pleistocene. Next, we chose a cluster of sites in Alaska, which uniformly lacked genetic divergence, to test for phenotypic divergence in toxicity. As predicted, overall levels of newt toxicity were low; however, we also detected unexpected among‐ and within‐population variation in toxicity. Most notably, a small number of individuals contained large doses of TTX that rival means of toxic populations in sympatry with Th. sirtalis. Phenotypic variation in toxicity, despite limited neutral genetic divergence, suggests that factors other than reciprocal selection with Th. sirtalis likely contribute to geographic patterns of toxicity in Ta. granulosa.  相似文献   

12.
The Andean uplift has played a major role in shaping the current Neotropical biodiversity. However, in arthropods other than butterflies, little is known about how this geographic barrier has impacted species historical diversification. Here, we examined the phylogeography of the widespread color polymorphic spider Gasteracantha cancriformis to evaluate the effect of the northern Andean uplift on its divergence and assess whether its diversification occurred in the presence of gene flow. We inferred phylogenetic relationships and divergence times in G. cancriformis using mitochondrial and nuclear data from 105 individuals in northern South America. Genetic diversity, divergence, and population structure were quantified. We also compared multiple demographic scenarios for this species using a model‐based approach (Phrapl ) to determine divergence with or without gene flow. At last, we evaluated the association between genetic variation and color polymorphism. Both nuclear and mitochondrial data supported two well‐differentiated clades, which correspond to populations occurring on opposite sides of the Eastern cordillera of the Colombian Andes. The final uplift of this cordillera was identified as the most likely force that shaped the diversification of G. cancriformis in northern South America, resulting in a cis‐ and trans‐Andean phylogeographic structure for the species. We also found shared genetic variation between the cis‐ and trans‐Andean clades, which is better explained by a scenario of historical divergence in the face of gene flow. This has been likely facilitated by the presence of low‐elevation passes across the Eastern Colombian cordillera. Our work constitutes the first example in which the Andean uplift coupled with gene flow influenced the evolutionary history of an arachnid lineage.  相似文献   

13.
Reproductive isolation is often variable within species, a phenomenon that while largely ignored by speciation studies, can be leveraged to gain insight into the potential mechanisms driving the evolution of genetic incompatibilities. We used experimental greenhouse crosses to characterize patterns of reproductive isolation among three divergent genetic lineages of Campanulastrum americanum that occur in close geographic proximity in the Appalachian Mountains. Substantial, asymmetrical reproductive isolation for survival due to cytonuclear incompatibility was found among the lineages (up to 94% reduction). Moderate reductions in pollen viability, as well as cytoplasmic male sterility, were also found between some Mountain populations. We then compared these results to previously established patterns of reproductive isolation between these Mountain lineages and a fourth, widespread Western lineage to fully characterize reproductive isolation across the complete geographic and genetic range of C. americanum. Reproductive isolation for survival and pollen viability was consistent across studies, indicating the evolution of the underlying genetic incompatibilities is primarily determined by intrinsic factors. In contrast, reproductive isolation for germination was only found when crossing Mountain populations with the Western lineage, suggesting the underlying genetic incompatibility is likely influenced by environmental or demographic differences between the two lineages. Cytoplasmic male sterility was also limited in occurrence, being restricted to a handful of Mountain populations in a narrow geographic range. These findings illustrate the complexity of speciation by demonstrating multiple, independent genetic incompatibilities that lead to a mosaic of genetic divergence and reproductive isolation across a species range.  相似文献   

14.
Successful geographic range expansion by parasites and parasitoids may also require host range expansion. Thus, the evolutionary advantages of host specialization may trade off against the ability to exploit new host species encountered in new geographic regions. Here, we use molecular techniques and confirmed host records to examine biogeography, population divergence, and host flexibility of the parasitoid fly, Ormia ochracea (Bigot). Gravid females of this fly find their cricket hosts acoustically by eavesdropping on male cricket calling songs; these songs vary greatly among the known host species of crickets. Using both nuclear and mitochondrial genetic markers, we (a) describe the geographical distribution and subdivision of genetic variation in O. ochracea from across the continental United States, the Mexican states of Sonora and Oaxaca, and populations introduced to Hawaii; (b) demonstrate that the distribution of genetic variation among fly populations is consistent with a single widespread species with regional host specialization, rather than locally differentiated cryptic species; (c) identify the more‐probable source populations for the flies introduced to the Hawaiian islands; (d) examine genetic variation and substructure within Hawaii; (e) show that among‐population geographic, genetic, and host song distances are all correlated; and (f) discuss specialization and lability in host‐finding behavior in light of the diversity of cricket songs serving as host cues in different geographically separate populations.  相似文献   

15.
Species delimitation has seen a paradigm shift as increasing accessibility of genomic‐scale data enables separation of lineages with convergent morphological traits and the merging of recently diverged ecotypes that have distinguishing characteristics. We inferred the process of lineage formation among Australian species in the widespread and highly variable genus Pelargonium by combining phylogenomic and population genomic analyses along with breeding system studies and character analysis. Phylogenomic analysis and population genetic clustering supported seven of the eight currently described species but provided little evidence for differences in genetic structure within the most widely distributed group that containing P. australe. In contrast, morphometric analysis detected three deep lineages within Australian Pelargonium; with P. australe consisting of five previously unrecognized entities occupying separate geographic ranges. The genomic approach enabled elucidation of parallel evolution in some traits formerly used to delineate species, as well as identification of ecotypic morphological differentiation within recognized species. Highly variable morphology and trait convergence each contribute to the discordance between phylogenomic relationships and morphological taxonomy. Data suggest that genetic divergence among species within the Australian Pelargonium may result from allopatric speciation while morphological differentiation within and among species may be more strongly driven by environmental differences.  相似文献   

16.
Historical tectonism and climate oscillations can isolate and contract the geographical distributions of many plant species, and they are even known to trigger species divergence and ultimately speciation. Here, we estimated the nucleotide variation and speciation in three closely related Populus species, Populus tremuloides, P. tremula and P. davidiana, distributed in North America and Eurasia. We analysed the sequence variation in six single‐copy nuclear loci and three chloroplast (cpDNA) fragments in 497 individuals sampled from 33 populations of these three species across their geographic distributions. These three Populus species harboured relatively high levels of nucleotide diversity and showed high levels of nucleotide differentiation. Phylogenetic analysis revealed that P. tremuloides diverged earlier than the other two species. The cpDNA haplotype network result clearly illustrated the dispersal route from North America to eastern Asia and then into Europe. Molecular dating results confirmed that the divergence of these three species coincided with the sundering of the Bering land bridge in the late Miocene and a rapid uplift of the Qinghai‐Tibetan Plateau around the Miocene/Pliocene boundary. Vicariance‐driven successful allopatric speciation resulting from historical tectonism and climate oscillations most likely played roles in the formation of the disjunct distributions and divergence of these three Populus species.  相似文献   

17.
This study demonstrates for the first time the presence of marine‐associated mites in the Andaman Sea and Strait of Malacca and reveals a relatively high diversity of these taxa with six species from two different families: Selenoribatidae and Fortuyniidae. Indopacifica, a new genus of Selenoribatidae, is described from Thailand and Malaysia, with two new species, Indopacifica pantai n. sp. and Indopacifica parva n. sp. The genus is characterized by the unique combination of following characters: lacking lamellar ridges, incomplete dorsosejugal suture, fourteen pairs of notogastral setae, and presence of epimeral foveae. A phylogenetic reconstruction based on 18S ribosomal RNA sequences clearly confirms the distinctness of the new genus Indopacifica and places it close to the genus Rhizophobates. The lack of molecular genetic data of possible relatives impedes a clear assessment, and hence, we emphasize the need for further combined approaches using morphological and molecular genetic sequence data. All species show wide distribution areas within this geographic region suggesting that these taxa are good dispersers despite their minute size and wingless body. Molecular genetic data demonstrate recent gene flow between far distant populations of I. pantai n. sp. from the coasts of Thailand and two islands of Malaysia and hence confirm this assumption. The seasonally changing surface currents within this geographic area may favor hydrochorous dispersal and hence genetic exchange. Nevertheless, morphometric data show a slight trend to morphological divergence among the studied populations, whereas this variation is suggested to be a result of genetic drift but also of habitat differences in one population of Alismobates pseudoreticulatus.  相似文献   

18.
Many biological species are threatened with extinction because of a number of factors such as climate change and habitat loss, and their preservation depends on an accurate understanding of the extent of their genetic variability within and among populations. In this study, we assessed the genetic divergence of five quantitative traits in 10 populations of an endangered cruciferous species, Boechera fecunda, found in only several populations in each of two geographic regions (WEST and EAST) in southwestern Montana. We analyzed variation in quantitative traits, neutral molecular markers, and environmental factors and provided evidence that despite the restricted geographical distribution of this species, it exhibits a high level of genetic variation and regional adaptation. Conservation efforts therefore should be directed to the preservation of populations in each of these two regions without attempting transplantation between regions. Heritabilities and genetic coefficients of variation estimated from nested ANOVAs were generally high for leaf and rosette traits, although lower (and not significantly different from 0) for water‐use efficiency. Measures of quantitative genetic differentiation, QST, were calculated for each trait from each pair of populations. For three of the five traits, these values were significantly higher between regions compared with those within regions (after adjustment for neutral genetic variation, FST). This suggested that natural selection has played an important role in producing regional divergence in this species. Our analysis also revealed that the B. fecunda populations appear to be locally adapted due, at least in part, to differences in environmental conditions in the EAST and WEST regions.  相似文献   

19.
Understanding the processes that drive divergence within and among species is a long‐standing goal in evolutionary biology. Traditional approaches to assessing differentiation rely on phenotypes to identify intra‐ and interspecific variation, but many species express subtle morphological gradients in which boundaries among forms are unclear. This intraspecific variation may be driven by differential adaptation to local conditions and may thereby reflect the evolutionary potential within a species. Here, we combine genetic and morphological data to evaluate intraspecific variation within the Nelson's (Ammodramus nelsoni) and salt marsh (Ammodramus caudacutus) sparrow complex, a group with populations that span considerable geographic distributions and a habitat gradient. We evaluated genetic structure among and within five putative subspecies of A. nelsoni and A. caudacutus using a reduced‐representation sequencing approach to generate a panel of 1929 SNPs among 69 individuals. Although we detected morphological differences among some groups, individuals sorted along a continuous phenotypic gradient. In contrast, the genetic data identified three distinct clusters corresponding to populations that inhabit coastal salt marsh, interior freshwater marsh and coastal brackish–water marsh habitats. These patterns support the current species‐level recognition but do not match the subspecies‐level taxonomy within each species—a finding which may have important conservation implications. We identified loci exhibiting patterns of elevated divergence among and within these species, indicating a role for local selective pressures in driving patterns of differentiation across the complex. We conclude that this evidence for adaptive variation among subspecies warrants the consideration of evolutionary potential and genetic novelty when identifying conservation units for this group.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号