首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The taxonomic status of Rhinolophus macrotis sensu lato (s.l.) in Vietnam and adjacent territories remains problematic. To address this issue, we performed an integrated study of morphological, acoustic, and genetic characters of R. macrotis s.l. specimens and compared these with sympatric species within the philippinensis group (R. marshalli, R. paradoxolophus, and R. rex). Our results reveal that in addition to a cryptic species of R. macrotis previously found in Jiangxi and Jingmen, China, R. macrotis s.l. in continental Asia includes three further species, namely R. cf. siamensis, R. cf. macrotis, and R. cf. macrotis “Phia Oac.” These four taxa are distinguished from genuine R. macrotis in Nepal and R. siamensis in Thailand by their morphological and/or genetic features. Further taxonomic evaluation of the subspecies of R. macrotis s.l. is needed to determine their affinities with recently recognized cryptic species and to possibly describe new taxa. Our results also show that interspecific divergences in mitochondrial DNA sequences (Cytb and COI genes) among taxa within the philippinensis group (particularly between R. cf. siamensis/R. cf. macrotis and R. rex/R. paradoxolophus) are significantly lower than those of other morphological groups in the genus. These phylogenetic patterns might be explained by recent allopatric speciation or ancient introgression events among ancestors of the taxa during the Pleistocene. However, further investigations including genetic analyses of nuclear genes are needed to test the latter hypothesis.  相似文献   

2.
The current study focuses on four species from the primarily marine diatom genus Craspedostauros that were observed growing attached to numerous sea turtles and sea turtle‐associated barnacles from Croatia and South Africa. Three of the examined taxa, C. danayanus sp. nov., C. legouvelloanus sp. nov., and C. macewanii sp. nov., are described based on morphological and, whenever possible, molecular characteristics. The new taxa exhibit characters not previously observed in other members of the genus, such as the presence of more than two rows of cribrate areolae on the girdle bands, shallow perforated septa, and a complete reduction of the stauros. The fourth species, C. alatus, itself recently described from museum sea turtle specimens, is reported for the first time from loggerhead sea turtles rescued in Europe. A 3‐gene phylogenetic analysis including DNA sequence data for three sea turtle‐associated Craspedostauros species and other marine and epizoic diatom taxa indicated that Craspedostauros is monophyletic and sister to Achnanthes. This study, being based on a large number of samples and animal specimens analyzed and using different preservation and processing methods, provides new insights into the ecology and biogeography of the genus and sheds light on the level of intimacy and permanency in the host–epibiont interaction within the epizoic Craspedostauros species.  相似文献   

3.
A new species of Cochliopodium isolated from freshwater at Arabia Lake in Lithonia, GA, USA is described based on light microscopic morphology, fine structure, and molecular genetic evidence. Cochliopodium arabianum n. sp., previously labeled as “isolate Con1” in prior publications, has been shown to group within the genus Cochliopodium in our molecular phylogenetic analysis. Light microscopy and fine structure evidence indicates the new isolate not only shares characters of the genus but also unique distinctive features. Cochliopodium arabianum n. sp. is typically round when stationary; or oval to sometimes broadly flabellate or triangular in shape during locomotion, with average length of 35 μm and breadth of 51 μm. Fine structure evidence indicates C. arabianum n. sp. has tower‐like scales, lacking a terminal spine, sharing high similarity with its closest relative C. actinophorum. However, the scales of C. arabianum n. sp. are unique in height and the breadth of the base plate. Both morphological and molecular data, including SSU‐rDNA and COI, indicate that this new species falls in a clade sufficiently different from other species to suggest that it is a valid new species.  相似文献   

4.
Proctonotidae and Madrellidae are families that belong to the suborder Cladobranchia. Historically, both have been the subjects of taxonomic confusion. Thus, Proctonotidae Gray, 1853, was subsequently named as Zephyrinidae Iredale and O'Donoghue, 1923 and Janolidae Pruvot‐Fol, 1933, but currently both are considered as synonyms of Proctonotidae. On the other hand, Alder and Hancock (1864) erected the genus Madrella in Proctonotidae. Here, we completed a detailed morphological and molecular study of four apparently undescribed species of Madrellidae and Proctonotidae from the Indo‐Pacific. We performed a maximum likelihood and Bayesian inference phylogenetic analyses using two mitochondrial and one nuclear genes to improve the understanding of the families. Prompted by our results, Janolidae is removed from synonymy with Proctonotidae. Within Janolidae, there are two well‐supported clades. One includes species with smooth cerata that are found in the Atlantic and eastern Pacific Oceans. The taxa in this clade include the type species of Antiopella and several other species. We resurrect Antiopella as the valid name for this clade. The sister clade to Antiopella includes a variety of taxa with species that have been traditionally included in Janolus Bergh, 1884 and Bonisa Gosliner, 1981. Further systematic revision requires more comprehensive taxon sampling. The new species discovered have clear morphological differences and strong molecular support. They include Madrella amphora Pola and Gosliner sp. nov. , Janolus tricellariodes Pola and Gosliner sp. nov. , Janolus flavoanulatus Pola and Gosliner sp. nov., and Janolus incrustans Pola and Gosliner sp. nov.  相似文献   

5.
Symbiotic dinoflagellates in the genus Breviolum (formerly Symbiodinium Clade B) dominate coral communities in shallow waters across the Greater Caribbean. While some formally described species exist, mounting genetic, and ecological evidence indicate that numerous more comprise this genus, many of which are closely related. To test this, colonies of common reef‐building corals were sampled across a large geographical range. Phylogenetic and population genetic markers then used to examine evolutionary divergence and delineate boundaries of genetic recombination. Three new candidate species were distinguished by fixed differences in nucleotide sequences from nuclear and chloroplast DNA. Population connectivity was evident within each lineage over thousands of kilometers, however, substantial genetic structure persisted between lineages co‐occurring within sampling locations, signifying reproductive isolation. While geographically widespread with overlapping distributions, each species is ecologically distinct, exhibiting specific mutualisms with phylogenetically distinct coral hosts. Moreover, significant differences in mean cell sizes provide some morphological evidence substantiating formal species distinctions. In providing evidence that satisfies the biological, phylogenetic, ecological, and morphological species concepts, we classify and formally name Breviolum faviinorum n. sp., primarily associated with Caribbean corals belonging to the Caribbean subfamily Faviinae; B. meandrinium n. sp., associated with corals belonging to the family Meandrinidae; and B. dendrogyrum n. sp., a symbiont harbored exclusively by the threatened coral Dendrogyra cylindrus. These findings support the primary importance of niche diversification (i.e. host habitat) in the speciation of symbiotic dinoflagellates.  相似文献   

6.
7.
The genus Phoxinus is comprised of at least 15 currently recognized species inhabiting Eurasia. Morphological traits have been traditionally used to delineate species in Phoxinus; however, the high level of phenotypic plasticity observed in the genus has confounded this process. Molecular genetic analyses have revealed a higher than expected genetic structure within Phoxinus. Here, we analyzed both nuclear and mitochondrial molecular genetic markers to infer the phylogeography and divergence times of Phoxinus in the Iberian Peninsula. Our results show that the Iberian lineages of Phoxinus were polyphyletic. They also support the co‐existence of three species in the Iberian Peninsula, two corresponding to two previously recognized species (Phoxinus bigerri and Phoxinus septimaniae) and a third undescribed species (Phoxinus sp.). Phoxinus bigerri is structured into western Cantabrian, eastern Cantabrian, and Artibai basins. We hypothesize that this structure is a consequence of glaciation–deglaciation cycles during the Pleistocene. While the presence of P. septimaniae in the Iberian Peninsula is possibly the result of human translocation, that of Phoxinus sp. in lower Ebro rivers may be attributed to past fluvial captures. Our study represents the first report to show a relationship among Phoxinus populations from central Pyrenean rivers of Spain and France. Furthermore, we found genetic hybridization between Phoxinus sp. and P. septimaniae in the shared localities, a likely consequence of anthropogenic activities. Overall, our findings provide insight into the genetic structure of Iberian Phoxinus populations, including the presence of an undescribed species and the putative introduction of some species that may have implications for conservation.  相似文献   

8.
Species of the marine benthic dinoflagellate genus Gambierdiscus are the principal cause of Ciguatera fish poisoning. This genus has been recorded from tropical to temperate oceans, although Gambierdiscus species have rarely been found in Chinese waters. Our work revealed the morphological and genetic characteristics of three potentially toxic Gambierdiscus species observed in the temperate to subtropical waters of China. The fine thecal morphology was determined based on light microscopy and scanning electron microscopy analyses, and these species were also characterized by sequencing the D1–D3 and D8–D10 regions of the LSU rDNA. The morphological and genetic data indicated that these three Gambierdiscus species were G. pacificus, G. australes and G. caribaeus. This work provides the first report of these species in Chinese waters, which increases the known species distribution of this genus.  相似文献   

9.
In an effort to broaden our understanding of the biodiversity and distribution of gregarines infecting crustaceans, this study describes two new species of gregarines, Thiriotia hyperdolphinae n. sp. and Cephaloidophora oradareae n. sp., parasitizing a deep sea amphipod (Oradarea sp.). Amphipods were collected using the ROV Hyper‐Dolphin at a depth of 855 m while on a cruise in Sagami Bay, Japan. Gregarine trophozoites and gamonts were isolated from the gut of the amphipod and studied with light and scanning electron microscopy, and phylogenetic analysis of 18S rDNA. Thiriotia hyperdolphinae n. sp. was distinguished from existing species based on morphology, phylogenetic position, as well as host niche and geographic locality. Cephaloidophora oradareae n. sp. distinguished itself from existing Cephaloidophora, based on a difference in host (Oradarea sp.), geographic location, and to a certain extent morphology. We established this latter new species with the understanding that a more comprehensive examination of diversity at the molecular level is necessary within Cephaloidophora. Results from the 18S rDNA molecular phylogeny showed that T. hyperdolphinae n. sp. was positioned within a clade consisting of Thiriotia spp., while C. oradareae n. sp. grouped within the Cephaloidophoridae. Still, supplemental genetic information from gregarines infecting crustaceans will be needed to better understand relationships within this group of apicomplexans.  相似文献   

10.
11.
Species diversity is generally higher in the tropics compared to the temperate zones. The phenomenon that one species of an almost exclusively tropical living genus was able to adapt successfully to the cold northern regions is rather rare. However, the oribatid mite Dolicheremaeus dorni represents such a species and is in the focus of this study. While 180 Dolicheremaeus species are confined to the tropics and subtropics, only five species are known to occur in temperate climates and D. dorni represents the only species with a wider distribution in this climatic region. This species is distributed in Central and Southern Europe and was now recorded for the first time in Austria. A morphological and molecular genetic investigation of specimens from Austria, Poland and Croatia confirmed this distribution pattern and revealed specific geographic clades and haplotypes for each population and hence indicate low gene flow between populations. A further molecular genetic analysis of the 18S rRNA gene sequence of D. dorni confirmed its phylogenetic position within Carabodoidea. Based on record information, this species is associated with trees or tree habitats and seems to be rather a generalist than a specialist for a specific substrate (e.g., tree species) or food source.  相似文献   

12.
13.
The venomous snake subfamily Hydrophiinae includes more than 40 genera and approximately 200 species. Most members of this clade inhabit Australia, and have been well studied. But, because of poor taxon sampling of Melanesian taxa, basal evolutionary relationships have remained poorly resolved. The Melanesian genera Ogmodon, Loveridgelaps, and Salomonelaps have not been included in recent phylogenetic studies, and the New Guinean endemic, Toxicocalamus, has been poorly sampled and sometimes recovered as polyphyletic. We generated a multilocus phylogeny for the subfamily using three mitochondrial and four nuclear loci so as to investigate relationships among the basal hydrophiine genera and to determine the status of Toxicocalamus. We sequenced these loci for eight of the 12 described species within Toxicocalamus, representing the largest molecular data set for this genus. We found that a system of offshore island arcs in Melanesia was the centre of origin for terrestrial species of Hydrophiinae, and we recovered Toxicocalamus as monophyletic. Toxicocalamus demonstrates high genetic and morphological diversity, but some of the molecular diversity is not accompanied by diagnostic morphological change. We document at least five undescribed species that all key morphologically to Toxicocalamus loriae (Boulenger, 1898), rendering this species polyphyletic. Continued work on Toxicocalamus is needed to document the diversity of this genus, and is likely to result in the discovery of additional species. Our increased taxon sampling allowed us to better understand the evolution and biogeography of Hydrophiinae; however, several unsampled lineages remain, the later study of which may be used to test our biogeographic hypothesis.  相似文献   

14.
Butterflies of the genus Polyura form a widespread tropical group distributed from Pakistan to Fiji. The rare endemic Polyura epigenes Godman & Salvin, 1888 from the Solomon Islands archipelago represents a case of marked island polymorphism. We sequenced museum specimens of this species across its geographic range to study the phylogeography and genetic differentiation of populations in the archipelago. We used the Bayesian Poisson tree processes and multispecies coalescent models, to study species boundaries. We also estimated divergence times to investigate the biogeographic history of populations. Our molecular species delimitation and nuclear DNA network analyses unambiguously indicate that Malaita populations form an independent metapopulation lineage, as defined in the generalized lineage concept. This lineage, previously ranked as a subspecies, is raised to species rank under the name Polyura bicolor Turlin & Sato, 1995  stat. nov. Divergence time estimates suggest that this lineage split from its sister taxon in the late Pleistocene. At this time, the bathymetric isolation of Malaita from the rest of the archipelago probably prevented gene flow during periods of lower sea level, thereby fostering allopatric speciation. The combination of molecular species delimitation methods, morphological comparisons, and divergence time estimation is useful to study lineage diversification across intricate geographic regions.  相似文献   

15.
16.
17.
The morphology and phylogeny of Loxodes vorax and L. striatus orientalis subsp. n. were investigated based on infraciliature and small subunit (SSU) rRNA gene sequence data. Loxodes striatus orientalis subsp. n. was separated from L. striatus striatus stat. n. by having fewer dikinetids in the intrabuccal kinety (35–55 vs. 50–70) and a variable number of macronuclei (2–4 vs. 2). In addition, the SSU rRNA gene sequence of the new subspecies differs in 13 and 11 nucleotides from that of two populations of the nominotypic subspecies. We also summarized the morphological differences between Loxodes and Remanella based on the data available. Phylogenetic analyses revealed that the genus Loxodes was monophyletic and nested within Remanella species. This study might, therefore, support the hypothesis that the freshwater genus Loxodes evolved from the marine genus Remanella.  相似文献   

18.
Diversity of the filamentous green algae in the genus Spirogyra (Zygnematophyceae) was investigated from more than 1,200 stream samples from California. We identified 12 species of Spirogyra not previously known for California (CA), including two species new to science, Spirogyra californica sp. nov. and Spirogyra juliana sp. nov. Environmental preferences of the Californian species are discussed in the light of their restricted distribution to stream habitats with contrasting nutrient levels. We also investigated the systematic relationships of Spirogyra species from several continents using the chloroplast‐encoded genes ribulose‐1,5‐bisphosphate carboxylase/hydrogenase large subunit (rbcL) and the beta subunit of the ATP synthase (atpB). Californian species were positioned in most major clades of Spirogyra. The phylogeny of Spirogyra and its taxonomic implications are discussed, such as the benefits of combining structural and molecular data for more accurate and consistent species identification. Considerable infraspecific genetic variation of globally distributed Spirogyra species was observed across continental scales. This finding suggests that structurally similar species from distant regions may be genetically dissimilar and that Spirogyra may contain a large number of cryptic species. Correlating the morphological and genetic variation within the genus will be a major challenge for future researchers.  相似文献   

19.
Ulva Linnaeus (Ulvophyceae, Ulvales) is a genus of green algae widespread in different aquatic environments. Members of this genus show a very simple morphology and a certain degree of phenotypic plasticity, heavily influenced by environmental conditions, making difficult the delineation of species by morphological features alone. Most studies dealing with Ulva biodiversity in Mediterranean waters have been based only on morphological characters and a modern taxonomic revision of this genus in the Mediterranean is not available. We report here the results of an investigation on the diversity of Ulva in the North Adriatic Sea based on molecular analyses. Collections from three areas, two of which subject to intense shipping traffic, were examined, as well as historical collections of Ulva stored in the Herbarium Patavinum of the University of Padova, Italy. Molecular analyses based on partial sequences of the rbcL and tufA genes revealed the presence of six different species, often with overlapping morphologies: U. californica Wille, U. flexuosa Wulfen, U. rigida C. Agardh, U. compressa Linnaeus, U. pertusa Kjellman, and one probable new taxon. U. californica is a new record for the Mediterranean and U. pertusa is a new record for the Adriatic. Partial sequences obtained from historical collections show that most of the old specimens are referable to U. rigida. No specimens referable to the two alien species were found among the old herbarium specimens. The results indicate that the number of introduced seaweed species and their impact on Mediterranean communities have been underestimated, due to the difficulties in species identification of morphologically simple taxa as Ulva.  相似文献   

20.
In symbiotic systems, patterns of symbiont diversity and selectivity are crucial for the understanding of fundamental ecological processes such as dispersal and establishment. The lichen genus Nephroma (Peltigerales, Ascomycota) has a nearly cosmopolitan distribution and is thus an attractive model for the study of symbiotic interactions over a wide range of spatial scales. In this study, we analyze the genetic diversity of Nephroma mycobionts and their associated Nostoc photobionts within a global framework. The study is based on Internal Transcribed Spacer (ITS) sequences of fungal symbionts and tRNALeu (UAA) intron sequences of cyanobacterial symbionts. The full data set includes 271 Nephroma and 358 Nostoc sequences, with over 150 sequence pairs known to originate from the same lichen thalli. Our results show that all bipartite Nephroma species associate with one group of Nostoc different from Nostoc typically found in tripartite Nephroma species. This conserved association appears to have been inherited from the common ancestor of all extant species. While specific associations between some symbiont genotypes can be observed over vast distances, both symbionts tend to show genetic differentiation over wide geographic scales. Most bipartite Nephroma species share their Nostoc symbionts with one or more other fungal taxa, and no fungal species associates solely with a single Nostoc genotype, supporting the concept of functional lichen guilds. Symbiont selectivity patterns within these lichens are best described as a geographic mosaic, with higher selectivity locally than globally. This may reflect specific habitat preferences of particular symbiont combinations, but also the influence of founder effects.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号