首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 421 毫秒
1.
现已证明,鳄梨和番茄等跃变型果实的成熟涉及基因表达的改变和新蛋白质(酶)的合成(Brady 1987)。但是,关于草莓这类非跃变型果实成熟的生化控制机理却很少报道,它们是否也如同跃变型果实那样与新的核酸和蛋白质合成有关?本实验测定了草莓果实成熟期间poly(A)+RNA含量的变化和poly(A)+RNA的体外翻译活性,目的在于探讨草莓果实的成熟机  相似文献   

2.
Polyribosomes from aging apple and cherry fruit   总被引:1,自引:1,他引:0       下载免费PDF全文
The sequence of events which occurs during the ripening of the Passe-Crassane pear fruit have been previously studied. In this work, we have investigated the ripening of another climacteric fruit (Pyrus malus L. cv Golden Delicious) and of a nonclimacteric fruit (Prunus avium L. cv Bigarreau Napoléon). We show that both climacteric fruits exhibit the same preclimacteric sequence of events. Differences exist, however, between the Golden Delicious apple and the Passe-Crassane pear in that the protein synthesis capacity of the two fruits is not the same during the over-ripening period. On the other hand, a nonclimacteric fruit, the Bigarreau Napoléon cherry, does not show an increase in its protein synthesis capacity during the over-ripening period.  相似文献   

3.
木葡聚糖内糖基转移酶(Xyloglucan endotransglycosylase,XET)通过分解细胞壁半纤维素多糖的主要成分--木葡聚糖而参与果实软化.为了阐明香蕉(Musa acuminata.Colla cv.GrandNain)果实成熟过程中的软化与细胞壁代谢酶XET基因表达模式的关系,采用RT-PCR和RACE-PCR方法,首次从成熟香蕉果实果肉中分离了编码XT基因的全长cDNA(MA-XET1,全长1 095 bp).序列分析表明,MA-XET1的5'端和3'端的非翻译区分别为66 bp和1 89bp,该片段含有一个完整的开放读码框,编码280个氨基酸,推导的MA-XET1蛋白质中存在XET蛋白的催化活性部位DEIDFEFL.Southern杂交表明,MA-XET1在香蕉基因组中由多拷贝基因编码.Northern分析显示,跃变前期的果肉中,不能检测MA-XET1基因的表达,跃变期的果实果肉中MA-XET1表达增加,跃变后期该基因表达略有减弱;在跃变前期的果实果皮中,MA-XET1的积累较低,跃变期的果实果皮中积累大幅增加,而后迅速下降.Propylene(丙烯,乙烯的类似物)处理降低香蕉果实果皮和果肉的硬度,而且propylene促进MA-XET1在果皮和果肉中的积累.这些结果表明,MA-XET1参与香蕉果实成熟过程中的果皮和果肉软化,并且,MA-XET1的表达在转录水平上受乙烯调控.  相似文献   

4.
Rapid ripening of mango fruit limits its distribution to distant markets. To better understand and perhaps manipulate this process, we investigated the role of plant hormones in modulating climacteric ripening of ??Kensington Pride?? mango fruits. Changes in endogenous levels of brassinosteroids (BRs), abscisic acid (ABA), indole-3-acetic acid (IAA), and ethylene and the respiration rate, pulp firmness, and skin color were determined at 2-day intervals during an 8-day ripening period at ambient temperature (21?±?1°C). We also investigated the effects of exogenously applied epibrassinolide (Epi-BL), (+)-cis, trans-abscisic acid (ABA), and an inhibitor of ABA biosynthesis, nordihydroguaiaretic acid (NDGA), on fruit-ripening parameters such as respiration, ethylene production, fruit softening, and color. Climacteric ethylene production and the respiration peak occurred on the fourth day of ripening. Castasterone and brassinolide were present in only trace amounts in fruit pulp throughout the ripening period. However, the exogenous application of Epi-BL (45 and 60?ng?g?1 FW) advanced the onset of the climacteric peaks of ethylene production and respiration rate by 2 and 1?day, respectively, and accelerated fruit color development and softening during the fruit-ripening period. The endogenous level of ABA rose during the climacteric rise stage on the second day of ripening and peaked on the fourth day of ripening. Exogenous ABA promoted fruit color development and softening during ripening compared with the control and the trend was reversed in NDGA-treated fruit. The endogenous IAA level in the fruit pulp was higher during the preclimacteric minimum stage and declined during the climacteric and postclimacteric stages. We speculate that higher levels of endogenous IAA in fruit pulp during the preclimacteric stage and the accumulation of ABA prior to the climacteric stage might switch on ethylene production that triggers fruit ripening. Whilst exogenous Epi-BL promoted fruit ripening, endogenous measurements suggest that changes in BRs levels are unlikely to modulate mango fruit ripening.  相似文献   

5.
6.
7.
Ethylene production by tissue slices from preclimacteric, climacteric, and postclimacteric apples was significantly reduced by isopentenyl adenosine (IPA), and by mixtures of IPA and indoleacetic acid, and of IPA, indoleacetic acid, and gibberellic acid after 4 hours of incubation. Ethylene production by apple (Pyrus malus L.) slices in abscisic acid was increased in preclimacteric tissues, decreased in climacteric peak tissues, and little affected in postclimacteric tissues. Indoleacetic acid suppressed ethylene production in tissues from preclimacteric apples but stimulated ethylene production in late climacteric rise, climacteric, and postclimacteric tissue slices. Gibberellic acid had less influence in suppressing ethylene production in preclimacteric peak tissue, and little influenced the production in late climacteric rise, climacteric peak, and postclimacteric tissues. IPA also suppressed ethylene production in pre- and postclimacteric tissue of tomatoes (Lycopersicon esculentum) and avocados (Persea gratissima). If ethylene production in tissue slices of ripening fruits is an index of aging, then IPA would appear to retard aging in ripening fruit, just as other cytokinins appear to retard aging in senescent leaf tissue.  相似文献   

8.
The levels of six glycolytic intermediates and the activity of phosphofructokinase (PFK) were determined in Dwarf Cavendish banana at different stages of ripening between harvest and senescence. There was a 2.3-fold increase in the level of fructose- 1,6-diphosphate between the preclimacteric and climacteric peak stage. The PFK preparations from preclimacteric and climacteric peak stages were purified ca 15-fold using Blue-Sepharose affinity chromatography. The clectrophoretic studies with the enzyme preparations ofthese two stages ofripening indicated the presence of two forms of PFK at both stages of ripening.  相似文献   

9.
Upon initiation of ripening in avocado fruit (Persea americana Mill. cv Hass) with 10 microliters/liter ethylene, polysome prevalence and associated poly(A)+ mRNA increase approximately 3-fold early in the respiratory climacteric and drop off to preclimacteric levels at the peak of the respiratory climacteric. The increase in poly(A)+ mRNA on polysomes early in the respiratory climacteric constitutes a generic increase in constitutive mRNAs. New gene expression associated with ripening is minimal but evident after 10 hours of ethylene treatment and continues to increase relative to constitutive gene expression throughout the climacteric. The respiratory climacteric can be temporally separated into two phases. The first phase is associated with a general increase in protein synthesis, whereas the second phase reflects new gene expression and accumulation of corresponding proteins which may be responsible for softening and other ripening characteristics. A major new message on polysomes that arises concomitantly with the respiratory climacteric codes for an in vitro translation product of 53 kilodaltons which is immunoprecipitated by antiserum against avocado fruit cellulase.

Cyanide at 500 microliters/liter fails to affect the change in polysome prevalance or new gene expression associated with the ethylene-evoked climacteric in avocado fruit. Treatment of fruit with 500 microliters/liter cyanide alone initiates a respiratory increase within 4 hours, ethylene biosynthesis within 18 hours, and new gene expression akin to that educed by ethylene within 20 hours of exposure to cyanide.

  相似文献   

10.
Moreau F  Romani R 《Plant physiology》1982,70(5):1380-1384
Mitochondria from avocado (Persea americana Mill, var. Fuerte and Hass) can be rapidly prepared at every stage of ripening using differential centrifugation and self-generated Percoll gradients. The procedure results in improved oxidative and phosphorylative properties, especially for mitochondria isolated from preclimacteric fruits.

A gradual change in the buoyant density of avocado mitochondria takes place during ripening. Climacteric and postclimacteric avocado mitochondria have the same buoyant density as other plant mitochondria (potato, cauliflower), whereas mitochondria from preclimacteric fruit have a lower density. The transition in buoyant density occurs during the climacteric rise, and two populations of intact mitochondria (p = 1.060 and p = 1.075) can be separated at this stage. Evidence indicates that the difference in mitochondrial buoyant density between preclimacteric and postclimacteric mitochondria is likely due to interactions with soluble cytosolic components.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号