首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
不同杂种优势群玉米籽粒脱水速率分析   总被引:2,自引:0,他引:2  
研究不同杂种优势群玉米自交系籽粒脱水速率的特性,筛选脱水速率快的自交系,为选育适应机械化作业的玉米杂交种提供借鉴。本试验采用烘干测定173份玉米自交系的籽粒的脱水速率及其相关性状,利用覆盖玉米全基因组的210对SSR标记对实验材料进行全基因组扫描,通过Structure V2.3.4 软件揭示其群体结构。对不同杂种优势群平均籽粒脱水速率进行方差分析,并筛选出各个群中籽粒灌浆速率快的自交系。研究结果如下:籽粒脱水速率在不同自交系间存在显著差异,与苞叶、穗轴及籽粒的含水率等性状间存在显著相关性。试验共筛选到脱水速率大于1%的自交系20个;授粉后40天时籽粒的含水率低于21%的自交系10个。参试自交系分成P、旅大红骨、瑞德、兰卡斯特和塘四平头5个杂种优势群;授粉后40天脱水速率依次是Reid群0.92%、Lancaster群0.85%、旅大红骨群0.82%、混合群0.80%、P群0.76%、塘四平头群0.56%。  相似文献   

2.
以代表我国玉米6个主要杂种优势群旅大红骨、Lancaster、Reid、苏湾、墨白和塘四平头的标准测验种丹340、自330、7922、苏37、449、黄早四和适应我国喀斯特高海拔山区的玉米骨干自交系为材料,利用RAPD标记对其进行遗传多样性和杂种优势群划分.从90个随机引物中筛选出21个多态性好的引物扩增材料,共产生146条谱带,其中124条谱带有多态性,占86.3%,说明喀斯特高海拔山区的玉米骨干自交系具有较丰富的遗传多样性.通过UPGMA聚类分析,以遗传相似系数为0.632,可将我国喀斯特高海拔山区玉米种质资源的16个骨干自交系划分为5个类群.  相似文献   

3.
中国重要玉米自交系种质资源子粒性状特征分析   总被引:2,自引:0,他引:2  
玉米子粒性状是决定玉米产量的重要因素。为了解析中国重要玉米种质资源子粒性状的遗传变异基础,本研究以具有广泛遗传多样性的627份重要玉米自交系为材料,运用相关分析与逐步回归的方法,探讨了我国玉米自交系种质资源的子粒性状特征。结果表明,百粒体积与百粒重存在极显著正相关。逐步回归分析表明,百粒体积对百粒重表型变异的贡献高达78%。针对不同杂种优势群的子粒性状特征分析表明,粒宽对百粒体积的贡献率在瑞德、旅大红骨、兰卡斯特和P群中均为最大,贡献率在54%~71%之间。而在塘四平头类群中,粒厚和粒长的贡献率分别为45%和22%。该研究旨在为利用不同类型种质资源开展子粒性状遗传解析提供参考和依据。  相似文献   

4.
玉米对生基因转育对主要农艺性状影响的研究   总被引:1,自引:1,他引:0  
本研究利用对生基因转育获得的对生与互生近等基因系及其杂交组合,分析了对生基因转育对玉米主要农艺性状的影响。结果表明对生自交系的产量性状一般低于互生自交系;对生系的油脂和淀粉含量高于互生系,而在蛋白质、赖氨酸和色氨酸含量上两者差异不明显;对生基因转育对玉米产量和品质性状间的相关性无不良影响。因此,对生基因的转育不影响玉米的产量和品质性状的同步改良。  相似文献   

5.
240份玉米自交系纹枯病抗性鉴定与评价   总被引:1,自引:0,他引:1  
在人工接种条件下,连续3年对240份玉米自交系纹枯病抗性进行鉴定和评价,分析了玉米纹枯病抗性与主要农艺性状的相关性。结果表明,玉米纹枯病抗性资源较为缺乏,240份自交系中无免疫或高抗的材料,有中抗自交系4份、感病自交系18份、高感自交系218份。旅大红骨、Reid、PA和塘四平头类群自交系中未发现玉米纹枯病抗源,PB类群和Lancaster类群自交系纹枯病抗性相对较好,今后应主要从这两类种质中寻找玉米纹枯病抗源。玉米纹枯病病情指数与株高、穗位高、穗位高/株高、穗下节间数和穗下平均节间长均呈极显著负相关,这些表型可以作为非接种条件下筛选抗玉米纹枯病种质的参考指标。  相似文献   

6.
本文利用对生基因转育获得的对生与互生自交系及其杂交组合,研究了对生性状对玉米主要品质性状的杂种优势和配合力的遗传效应的影响。结果表明:对生自交系籽粒品质性状的配合力效应一般高于互生玉米,在蛋白质含量上,对生F1杂种优势与普通互生F1无明显差异,而在油份和淀粉含量上对生F1较互生表现出明显的优势。不同组配方式对F1对生群体籽粒品质性状的杂种优势存在差异,在对生组合利用中通过互×互组配较对×对组配能使F1获得更高的蛋白质含量;选育含油量较高的对生系,利用对×对组合有助于选育高油杂交种;选育淀粉含量较高的含有不同对生基因的互生自交系作亲本,利用互×互组配有助于选育高淀粉对生杂交组合。  相似文献   

7.
在2016年和2017年分别对44份不同来源的在自然发病条件下对穗腐病表现为抗病或感病的玉米自交系,分别人工接种拟轮枝镰孢和禾谷镰孢,对其抗性进行了鉴定。结果表明,塘四平头群的自交系发病最重,旅大红骨群的自交系发病最轻,瑞德群的自交系之间抗性差异较大。玉米自交系吉V203、承351和丹598对拟轮枝镰孢和禾谷镰孢均表现为高抗,而PHTD5和掖81162对两种致病菌均表现为高感。44份自交系在不同年份的抗性评级存在一定的差异,说明玉米穗腐病的发病受环境因素影响较大,也在一定程度上说明玉米穗腐病抗性遗传的复杂性。高抗和高感的玉米自交系在不同年份发病稳定,而中等抗性水平的自交系在不同年份的发病程度存在差异,受环境因素影响较大。本研究结果将为玉米穗腐病的抗性遗传改良提供一定的参考依据。  相似文献   

8.
研究我国玉米自交系茎秆性状特征及其多样性,是培育宜机收玉米品种的重要前提。本研究以兰卡斯特、PB、四平头、旅大红骨和瑞德五大主要类群70份主要玉米自交系为材料,调查12个茎秆相关性状(茎高、穗位高、穗位系数、茎节数、穗位节、穗节系数、穗茎长、穗茎粗、茎鲜重、茎干重、含糖量和含水量),分析性状相关性和类群多样性。结果表明,我国地方种质四平头和旅大红骨茎秆性状表型变异丰富;灌浆期玉米茎秆含水量比较稳定;玉米植株高度与茎节长度显著相关;玉米雌、雄穗节之间的节间数比较恒定;玉米茎秆含糖量与茎节长度、茎粗、果穗着生位置有关;有效降低穗位高度应从降低果穗着生节入手;类群茎秆特征鲜明:兰卡斯特茎节较少,瑞德茎秆较粗,PB茎秆较细,旅大红骨茎秆较粗、茎节较短,四平头植株较矮、茎秆含糖量较低、干物质含量较低;兰卡斯特×四平头和兰卡斯特×PB类群间存在较强的生物量及籽粒产量杂种优势;挖掘和利用茎节较长、穗位较低的玉米地方种质是我国宜机收玉米育种的技术途径。本研究结果对玉米育种具有重要指导意义。  相似文献   

9.
44份玉米自交系对镰孢穗腐病的抗性鉴定   总被引:2,自引:0,他引:2  
在2016年和2017年分别对44份不同来源的在自然发病条件下对穗腐病表现为抗病或感病的玉米自交系,分别人工接种拟轮枝镰孢和禾谷镰孢,对其抗性进行了鉴定。结果表明,塘四平头群的自交系发病最重,旅大红骨群的自交系发病最轻,瑞德群的自交系之间抗性差异较大。玉米自交系吉V203、承351和丹598对拟轮枝镰孢和禾谷镰孢均表现为高抗,而PHTD5和掖81162对两种致病菌均表现为高感。44份自交系在不同年份的抗性评级存在一定的差异,说明玉米穗腐病的发病受环境因素影响较大,也在一定程度上说明玉米穗腐病抗性遗传的复杂性。高抗和高感的玉米自交系在不同年份发病稳定,而中等抗性水平的自交系在不同年份的发病程度存在差异,受环境因素影响较大。本研究结果将为玉米穗腐病的抗性遗传改良提供一定的参考依据。  相似文献   

10.
通过对分别具有黄早四Mo17或同时具有两者轿缘的三组不同杂交组合F1果穗上白顶籽粒的研究分析,发现户单1号的籽粒白顶性状是其双亲共同作用的结果,自交系黄早四的籽粒白顶可遗传给后代,而Mo17对其表现起一定作用,当杂交种同时具有两者血缘时,果穗上正常数粒与白顶籽粒相间着生。不完全双列杂交结果表明,黄早四改良系的杂交种也存在籽粒白顶现象,但白顶籽粒的比率各改良系杂交种差异较大,且代于黄早四的杂交种;M  相似文献   

11.
Zhang J  He M  Liu Y  Liu H  Wei B  Wang Y  Huang Y 《Biochemical genetics》2012,50(7-8):508-519
Research on the sequence polymorphism characteristics of key genes is important in the early identification of maize inbred lines. The See2β gene functions in remobilizing leaf nitrogen and exporting it to developing grain during foliar senescence. We analyzed See2β sequences from 49 inbred lines representing four key lines and their derivatives: Huangzaosi, Mo17, Dan340, and Ye478. We found that the See2β gene had one insertion and two deletions in most Huangzaosi lines and three insertions in the Mo17 group; that the Huangzaosi, Dan340, and Ye478 lines, but not the Mo17 line, had unique indels; and that the See2β gene in lines derived from the same key inbred line had higher sequence homology, according to phenetic analysis of the inbred lines derived from Huangzaosi and Mo17. Thus, a candidate inbred line could be preliminarily identified using markers closely linked to the See2β gene combined with sequence alignment of See2β.  相似文献   

12.
Development of micronutrient enriched staple foods is an important breeding goal in view of the extensive problem of ‘hidden hunger’ caused by micronutrient malnutrition. In the present study, kernel iron (Fe) and zinc (Zn) concentrations were evaluated in a set of 31 diverse maize inbred lines in three trials at two locations – Delhi (Kharif 2007 & 2008) and Hyderabad (Rabi 2007–08). The ranges of kernel Fe and Zn concentrations were 13.95–39.31 mg/kg and 21.85–40.91 mg/kg, respectively, across the three environments. Pooled analysis revealed significant genotype × environment (G × E) interaction in the expression of both the micronutrient traits, although kernel Fe was found to be more sensitive to G × E as compared to kernel Zn. Seven inbred lines, viz., BAJIM-06-03, DQPM-6, CM212, BAJIM-06-12, DQPM-7, DQPM-2 and CM129, were found to be the most stable and promising inbred lines for kernel Zn concentration, while for kernel Fe concentration, no promising and stable genotypes could be identified. Analysis of molecular diversity in 24 selected inbred lines with phenotypic contrast for the two kernel micronutrient traits, using 50 SSR markers covering the maize genome, revealed high levels of polymorphisms (214 SSR alleles; mean PIC value?=?0.62). The phenotypically contrasting and genetically diverse maize inbred lines identified in this study could be potentially utilized in further studies on QTL analysis of kernel micronutrient traits in maize, and the stable and most promising kernel micronutrient-rich maize genotypes provide a good foundation for developing micronutrient-enriched maize varieties suitable for the Indian context.  相似文献   

13.
Information regarding diversity and relationships among breeding material is necessary for hybrid maize (Zea mays L.) breeding. Simple-sequence repeat (SSR) analysis of the 60 loci distributed uniformly throughout the maize genome was carried out for 65 inbred lines adapted to cold regions of Japan in order to assess genetic diversity among the inbred lines and to assign them to heterotic groups. The mean value (0.69) of the polymorphic-index content (PIC) for the SSR loci provided sufficient discrimination-ability for the assessment of genetic diversity among the inbred lines. The correlation between the genetic-similarity (GS) estimates and the coancestry coefficient was significant (r = 0.70). The average-linkage (UPGMA) cluster analysis and principal-coordinate analysis (PCOA) for a matrix of the GS estimates showed that the Northern flint inbred lines bred in Japan were similar to a Canadian Northern flint inbred line CO12 and a European flint inbred line F283, and that dent inbred lines bred in Japan were similar to BSSS inbred lines such as B73. These associations correspond to the known pedigree records of these inbred lines. The results indicate that SSR analysis is effective for the assessment of genetic diversity among maize inbred lines and for the assignment of inbred lines to heterotic groups.  相似文献   

14.
There is an important role of understanding the genetic diversity among and within inbred lines at the molecular level for maize improvement in different breeding programs. The present study was devoted to estimate the level of genetic diversity among the inbred lines of maize using the simple sequence repeat analysis (SSR). The application of six different SSR markers successfully provided the information on similarity or diversity as well as the heterozygosity of the allelic loci for all the eight inbred line of maize.  相似文献   

15.
Information regarding the genetic diversity and genetic relationships among elite inbred lines is necessary to improve new cultivars in maize breeding programs. In this study, genetic diversity and genetic relationships were investigated among 84 waxy maize inbred lines using 50 SSR markers. A total of 269 alleles were identified at all the loci with an average of 5.38 and a range between 2 and 13 alleles per locus. The gene diversity values varied from 0.383 to 0.923 with an average of 0.641. The cluster tree generated using the described SSR markers recognized two major groups at 32% genetic similarity. Group I included 33 inbred lines while group II included 51 inbred lines. The clustering patterns of most of the waxy maize inbred lines did not clearly agree with their source, pedigree or geographic location. The average GS among all inbred lines was 35.7 ± 10.8. Analysis of waxy maize inbred lines collected from Korea and China at 50 SSR loci revealed higher values of average number of alleles (4.9) and gene diversity (0.638) in Korean inbred lines as compared to Chinese inbred lines (3.5 and 0.563, respectively). The information obtained from the present studies would be very useful for maize breeding programs in Korea.  相似文献   

16.
吉林省部分玉米种质资源抗玉米弯孢菌叶斑病鉴定研究   总被引:1,自引:0,他引:1  
玉米弯孢菌叶斑病主要是由弯孢菌(Curvularia lunata)引起的侵染性病害。近年来,该病害在我国玉米主产区发生面积逐年扩大,已成为玉米重要病害之一。本文研究了吉林省主要玉米杂交种和自交系抗病性差异,结果表明:玉米杂交种间以及自交系间抗病性差异明显;吉63、黄早4、自330、丹9046、丹9041、铁7922、掖478、沈5003、丹340和E28等一批应用多年的种质资源均为感病类型(MS-HS);而新选育的各类群一些种质和具有热带、亚热带血缘的78599等一些外来种质资源均为抗病类型(R~HR)。杂交种的抗病性与双亲的抗病性有密切关系;玉米杂交种苗期较抗病,抽丝期极为感病,这表明杂交种抗性随植株生长而递减。  相似文献   

17.
铅(Pb2+)是现存环境最大量的有毒重金属污染元素,在我国特别是西南地区种植的玉米受重金属Pb2+污染日益严重,已严重影响到食物安全。文章利用玉米籽粒Pb2+低富集自交系178和籽粒Pb2+高富集自交系9782杂交衍生的重组自交系群体为作图群体,利用165对SSR多态性标记,构建了总长度为1499.85 cM、标记间平均距离为9.07 cM的分子遗传图谱,对玉米籽粒Pb2+含量性状进行了QTL定位分析,以期为选育籽粒低富集Pb2+的玉米新品种提供参考。结果表明,在Pb2+浓度为333.32 mg/kg胁迫下,共检测到2个与籽粒Pb2+含量相关的QTL,分别位于玉米第1、第4号染色体,其中qPC1位于标记区间umc1661~phi002h之间,表型贡献率为11.13%,加性效应为0.062;qPC4位于umc1117~nc005之间,表型贡献率为5.55%,加性效应为-0.044。性状相关分析结果表明,籽粒中Pb2+含量与穗长、穗粗、行粒数、穗重和百粒重等产量性状间均未达到显著水平,表明选育玉米籽粒Pb2+低富集的新自交系或杂交种不一定会影响到产量性状,而且籽粒Pb2+含量是一个相对独立的遗传性状。  相似文献   

18.
Understanding genetic diversity, population structure, and the level and distribution of linkage disequilibrium (LD) in target populations are of great importance and the prerequisite for association mapping. In the present study, 145 genome-wide SSR markers were used to assess the genetic diversity, population structure, and LD of a set of 95 maize inbred lines which represented the Chinese maize inbred lines. Results showed that the population included a diverse genetic variation. A model-based population structure analysis subdivided the inbred lines into four subgroups that correspond to the four major empirical germplasm origins in China, i.e., Lancaster, Reid, Tangsipingtou and P. Among all of the inbred lines, 65.3% were assigned into the corresponding subgroups; others were assigned into a “mixed” subgroup. LD was significant at a 0.01 level between 63.89% of the SSR pairs in the entire sample and with a range of 18.75–40.28% in the subgroups. Among factors influencing LD, linkage was the major cause for LD of SSR loci. The results suggested that the population may be used in the detection of genome-wide SSR marker–phenotype association. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users. R. Wang and Y. Yu contributed equally to the work.  相似文献   

19.

Key message

Genetic relationships among Chinese maize germplasms reveal historical trends in heterotic patterns from Chinese breeding programs and identify line Dan340 as a potential genome donor for elite inbred line Zheng58.

Abstract

The characterization of the genetic relationships, heterotic patterns and breeding history of lines in maize breeding programs allows breeders to efficiently use maize germplasm for line improvement over time. In this study, 269 temperate inbred lines, most of which have been widely used in Chinese maize breeding programs since the 1970s, were genotyped using the Illumina MaizeSNP50 BeadChip, which contains 56,110 single-nucleotide polymorphisms. The STRUCTURE analysis, cluster analysis and principal coordinate analysis results consistently revealed seven groups, of which five were consistent with known heterotic groups within the Chinese maize germplasm—Domestic Reid, Lancaster, Zi330, Tang SPT and Tem-tropic I (also known as “P”). These genetic relationships also allowed us to determine the historical trends in heterotic patterns during the three decades from 1970 to 2000, represented by Mo17 from Lancaster, HuangZaoSi (HZS) from Tang SPT, Ye478 from Domestic Reid and P178 from Tem-tropic I heterotic groups. Mo17-related commercial hybrids were widely used in the 1970s and 1980s, followed by the release of HZS- and Ye478-related commercial hybrids in the 1980s and 1990s, and the introduction of Tem-tropic I group in the 1990s and 2000s. Additionally, we identified inbred line Dan340 as a potential genome donor for Zheng58, which is the female parent of the most widely grown commercial hybrid ZhengDan958 in China. We also reconstructed the recombination events of elite line HZS and its 14 derived lines. These findings provide useful information to direct future maize breeding efforts.
  相似文献   

20.
The classification of maize inbred lines into heterotic groups is an important undertaking in hybrid breeding. The objectives of our research were to: (1) separate selected tropical mid-altitude maize inbred lines into heterotic groups based on grain yield data; (2) assess the genetic relationships among these inbred lines using amplified fragment length polymorphism (AFLP) and simple sequence repeat (SSR) markers; (3) examine the consistency between yield-based and marker-based groupings of the inbred lines. Thirty-eight tropical mid-altitude maize inbred lines were crossed to two inbred line testers representing the flint and dent heterotic pattern, respectively. The resulting testcrosses were evaluated in a trial at three locations for 2 years. Significant general combining ability (GCA) and specific combining ability (SCA) effects for grain yield were detected among the inbred lines. The tester inbred lines classified 23 of the 38 tested inbred lines into two heterotic groups based on SCA effects and testcross mean grain yields. This grouping was not related to endosperm type of the inbred lines. The outstanding performance of testcrosses of the remaining 15 inbred lines indicates the presence of significant genetic diversity that may allow the assignment of the lines into more than two heterotic groups. Diversity analysis of the 40 maize inbred lines using AFLP and SSR markers found high levels of genetic diversity among these lines and subdivided them into two main groups with subdivision into sub-groups consistent with breeding history, origin and parentage of the lines. However, heterotic groups formed using yield-based combining ability were different from the groups established on the basis of molecular markers. Considering the diversity of the genetic backgrounds of the mid-altitude inbred lines, the marker-based grouping may serve as the basis to design and carry out combining ability studies in the field to establish clearly defined heterotic groups with a greater genetic similarity within groups.Communicated by H.H. Geiger  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号