首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
Hexaploid triticale introgressive lines developed after recombination of A-genome with Am-genome of diploid wheat (Triticum monococcum) were analysed in respect of grains responsiveness to exogenous ABA treatment. This was assessed by in vivo bioassay as grain germination indices, and by α-amylase assay as quantity of synthesised α-amylase measured with the technique of radial diffusion in agarose gel. The results showed an important diminishing of seedling length caused by ABA (variable in different lines) as well as genotype dependant variability of α-amylase synthesis inhibition. The differences of ABA responsiveness were seen both in whole grains and in embryoless half-grains as a direct reaction of the aleurone layer. Variation of grain sensitivity to ABA treatment compared with two sprouting resistance indices showed a significant correlation with Falling Number values in grains, but not with a dormant grains germination in spikes. This is an evidence that in triticale precocious starch decompose in unripened and ungerminated grains is dependent on genotype ABA-responsiveness of the aleurone layer. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

5.
AMP-activated protein kinase (AMPK) plays an important role in mediating energy metabolism and is controlled mainly by two upstream kinases, LKB1 or Ca2+/calmodulin-dependent protein kinase kinase-β (CaMKKβ). Previously, we found that baicalin, one of the major flavonoids in a traditional Chinese herb medicine, Scutellaria baicalensis, protects against the development of hepatic steatosis in rats feeding with a high-fat diet by the activation of AMPK, but, the underlying mechanism for AMPK activation is unknown. Here we show that in two LKB1-deficient cells, HeLa and A549 cells, baicalin activates AMPK by α Thr-172 phosphorylation and subsequent phosphorylation of its downstream target, acetyl CoA carboxylase, at Ser-79, to a similar degree as does in HepG2 cells (that express LKB1). Pharmacologic inhibition of CaMKKβ by its selective inhibitor STO-609 markedly inhibits baicalin-induced AMPK activation in both HeLa and HepG2 cells, indicating that CaMKKβ is the responsible AMPK kinase. We also show that treatment of baicalin causes a larger increase in intracellular Ca2+ concentration ([Ca2+]i), although the maximal level of [Ca2+]i is lower in HepG2 cells compared to HeLa cells. Chelation of intracellular free Ca2+ by EDTA and EGTA, or depletion of intracellular Ca2+ stores by the endoplasmic reticulum Ca2+-ATPase inhibitor thapsigargin abrogates baicalin-induced activation of AMPK in HeLa cells. Neither cellular ATP nor the production of reactive oxygen species is altered by baicalin. Finally, in HeLa cells, baicalin treatment no longer decreases intracellular lipid accumulation caused by oleic acid after inhibition of CaMKKβ by STO-609. These results demonstrate that a potential Ca2+/CaMKKβ dependent pathway is involved in the activation of AMPK by baicalin and suggest that CaMKKβ likely acts as an upstream kinase of AMPK in response to baicalin.  相似文献   

6.
7.
Although α-synuclein (α-syn) phosphorylation has been considered as a hallmark of sporadic and familial Parkinson disease (PD), little is known about the effect of PD-linked mutations on α-syn phosphorylation. In this study, we investigated the effects of the A30P, E46K, and A53T PD-linked mutations on α-syn phosphorylation at residues Ser-87 and Ser-129. Although the A30P and A53T mutants slightly affected Ser(P)-129 levels compared with WT α-syn, the E46K mutation significantly enhanced Ser-129 phosphorylation in yeast and mammalian cell lines. This effect was not due to the E46K mutant being a better kinase substrate nor due to alterations in endogenous kinase levels, but was mostly linked with enhanced nuclear and endoplasmic reticulum accumulation. Importantly, lentivirus-mediated overexpression in mice also showed enhanced Ser-129 phosphorylation of the E46K mutant compared to WT α-syn, thus providing in vivo validation of our findings. Altogether, our findings suggest that the different PD-linked mutations may contribute to PD pathogenesis via different mechanisms.  相似文献   

8.
Epstein-Barr virus (EBV) is associated with Burkitt’s lymphoma (BL), and in regions of sub-Saharan Africa where endemic BL is common, both the EBV Type 1 (EBV-1) and EBV Type 2 strains (EBV-2) are found. Little is known about genetic variation of EBV strains in areas of sub-Saharan Africa. In the present study, spontaneous lymphoblastoid cell lines (LCLs) were generated from samples obtained from Kenya. Polymerase chain reaction (PCR) amplification of the EBV genome was done using multiple primers and sequenced by next-generation sequencing (NGS). Phylogenetic analyses against the published EBV-1 and EBV-2 strains indicated that one sample, LCL10 was closely related to EBV-2, while the remaining 3 LCL samples were more closely related to EBV-1. Moreover, single nucleotide polymorphism (SNP) analyses showed clustering of LCL variants. We further show by analysis of EBNA-1, BLLF1, BPLF1, and BRRF2 that latent genes are less conserved than lytic genes in these LCLs from a single geographic region. In this study we have shown that NGS is highly useful for deciphering detailed inter and intra-variations in EBV genomes and that within a geographic region different EBV genetic variations can co-exist, the implications of which warrant further investigation. The findings will enhance our understanding of potential pathogenic variants critical to the development and maintenance of EBV-associated malignancies.  相似文献   

9.
10.
The functional characteristics of a nonacidic, inositol 1,4,5-trisphosphate– and thapsigargin-insensitive Ca2+ pool have been characterized in mammalian cells derived from the rat pituitary gland (GH3, GC, and GH3B6), the adrenal tissue (PC12), and mast cells (RBL-1). This Ca2+ pool is released into the cytoplasm by the Ca2+ ionophores ionomycin or A23187 after the discharge of the inositol 1,4,5-trisphosphate–sensitive store with an agonist coupled to phospholipase C activation and/or thapsigargin. The amount of Ca2+ trapped within this pool increased significantly after a prolonged elevation of intracellular Ca2+ concentration elicited by activation of Ca2+ influx. This pool was affected neither by caffeine-ryanodine nor by mitochondrial uncouplers. Probing mitochondrial Ca2+ with recombinant aequorin confirmed that this pool did not coincide with mitochondria, whereas its homogeneous distribution across the cytosol, as revealed by confocal microscopy, and its insensitivity to brefeldin A make localization within the Golgi complex unlikely. A proton gradient as the driving mechanism for Ca2+ uptake was excluded since ionomycin is inefficient in releasing Ca2+ from acidic pools and Ca2+ accumulation/release in/from this store was unaffected by monensin or NH4Cl, drugs known to collapse organelle acidic pH gradients. Ca2+ sequestration inside this pool, thus, may occur through a low-affinity, high-capacity Ca2+–ATPase system, which is, however, distinct from classical endosarcoplasmic reticulum Ca2+–ATPases. The cytological nature and functional role of this Ca2+ storage compartment are discussed.The cytosolic free Ca2+ concentration ([Ca2+]i)1 of eukaryotic cells rests in the range of 50–200 nM, i.e., at a very low level, if compared to the Ca2+ concentration of physiological media (2 mM). However, the total cellular Ca2+ content is closer to this latter value (1–3 mmol/l of cell water). In other words, eukaryotic cells sequester large amounts of Ca2+ mainly by uptake inside intracellular Ca2+ stores (∼90%) (for reviews see Pozzan et al., 1994; Clapham, 1995).The complexity of intracellular Ca2+ stores has been intensively investigated in recent years (for reviews see Meldolesi et al., 1990; Pozzan et al., 1994; Simpson et al., 1995). Attention has been focused mainly on Ca2+ stores that are highly dynamic because of their ability to rapidly take up and release Ca2+. Ca2+ sequestration into these pools depends on Ca2+–ATPases, known as sarco/endoplasmic reticulum Ca2+–ATPases (SERCAs) (Burk et al., 1989; Bobe et al., 1994; Wuytack et al., 1994). All the SERCA isoforms share the property of being selectively inhibited by thapsigargin (Tg), a tumor-promoting sesquiterpene lactone (Lytton et al., 1991). Tg acts with both high affinity, at nanomolar concentrations, and high specificity, with virtually no effect on the Ca2+– or Na+/K+– ATPase of the plasmalemma.Other drugs, such as 2,5-di(tert-butyl)-1,4-benzohydroquinone (tBHQ) and cyclopiazonic acid (CA), also block SERCAs, albeit with a significantly lower affinity (Mason et al., 1991). Ca2+ release, on the other hand, depends mainly on two types of Ca2+ release channels named inositol 1,4,5-trisphosphate (InsP3) and ryanodine receptors (for reviews see Mikoshiba, 1993; Sorrentino and Volpe, 1993; Ehrlich, 1995). These channels are expressed in variable proportions in different cell types and couple extracellular stimuli to the release of Ca2+, with possible ensuing generation of Ca2+ waves and spikes (for reviews see Amundson and Clapham, 1993; Taylor, 1994; Bootman and Berridge, 1995). The relationship between these types of Ca2+-release channels is still largely debated. The ryanodine-sensitive channel is also activated by caffeine, and ryanodine- and caffeine-sensitive stores are generally regarded to comprise the same pool (Zacchetti et al., 1991; Barry and Cheek, 1994; but also see Giannini et al., 1992; McNulty and Taylor, 1993).In the vast majority of cell types so far investigated, the InsP3- (and/or the ryanodine-) sensitive stores almost completely overlap with those sensitive to Tg (Zacchetti et al., 1991; Gamberucci et al., 1995) and are thus referred to also as Tg-sensitive Ca2+ pools. From the cytological point of view, the InsP3-/Tg-sensitive Ca2+ pool is identified with the ER or with a subfraction of it (Hashimoto et al., 1988).The complexity of the relationships between the InsP3- and ryanodine/caffeine-sensitive stores does not cover the entire issue of intracellular Ca2+ pool heterogeneity. Other types of Ca2+ pools are known to exist, the size of which varies considerably among different cell types. These latter Ca2+ stores account for roughly half of all sequestered Ca2+ (Chandra et al., 1991; Fasolato et al., 1991; Shorte et al., 1991; Bastianutto et al., 1995; Mery et al., 1996). They have been identified through the increase in [Ca2+]i upon application of Ca2+ ionophores, after depletion of the Tgsensitive pool with a combination, or a sequence, of InsP3generating agonists, Tg, and caffeine. These residual Tginsensitive pools appear rather heterogeneous in terms of cytological identity and pharmacological sensitivity. Part of these pools shows an acidic lumenal pH and is discharged only by a combination of a Ca2+ ionophore and of agents that collapse internal acidic pH gradients (such as monensin and NH4Cl). 45Ca2+ labeling of Tg-insensitive pools is slower than that of the Tg-sensitive store, and, for this reason, they have been generally indicated as slowly exchanging Ca2+ pools (Fasolato et al., 1991). As far as their identification is concerned, the acidic pool seems largely identifiable with secretory compartments and lysosomes, while very little is known yet about the rest of the Tg-insensitive store.Here we demonstrate that a nonacidic, InsP3- and Tg- insensitive Ca2+ pool rapidly accumulates large amounts of Ca2+ when high and sustained increases of [Ca2+]i are induced by opening of voltage- or store-operated Ca2+ channels. This Ca2+ storage compartment is insensitive to mitochondrial uncouplers and appears diffusely distributed in the cell cytosol. The possibility is discussed that this low-affinity, high-capacity Ca2+ pool represents a previously unidentified subcompartment of the ER expressing a Tg-insensitive Ca2+–ATPase.  相似文献   

11.
Dimerization of hypoxia-inducible factor-1 beta (HIF-1β) [aryl hydrocarbon receptor nuclear translocator (ARNT)] with HIF-1α is involved in various aspects of cancer biology, including proliferation and survival under hypoxic conditions. We investigated the in vitro mechanism by which silencing of HIF-1β leads to the suppression of tumor cell growth and cellular functions. Various hepatocellular carcinoma (HCC) cell lines (Huh-7, Hep3B, and HepG2) were transfected with small interfering RNA (siRNA) against HIF-1β (siHIF-1β) and cultured under hypoxic conditions (1% O2 for 24 h). The expression levels of HIF-1β, HIF-1α, and growth factors were examined by immunoblotting. Tumor growth was measured using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay, and tumor activity was measured by terminal deoxynucleotidyl transferase dUTP nick end labeling, tumor cell invasion, and migration assays. Under hypoxic conditions, silencing of HIF-1β expression suppressed tumor cell growth and regulated the expression of tumor growth-related factors, such as vascular endothelial growth factor, epidermal growth factor, and hepatocyte growth factor. Suppression of tumor cell invasion and migration was also demonstrated in HIF-1β-silenced HCC cell lines. Silencing of HIF-1β expression may induce anti-tumor effects under hypoxic conditions in HCC cell lines.  相似文献   

12.
13.
Medulloblastoma (MB) is the most common malignant brain tumor in children and occurs mainly in the cerebellum. Important intracellular signaling molecules, such those present in the Sonic Hedgehog and Wnt pathways, are involved in its development and can also be employed to determine tumor grade and prognosis. Ectonucleotidases, particularly ecto-5′NT/CD73, are important enzymes in the malignant process of different tumor types regulating extracellular ATP and adenosine levels. Here, we investigated the activity of ectonucleotidases in three malignant human cell lines: Daoy and ONS76, being representative of primary MB, and the D283 cell line, derived from a metastatic MB. All cell lines secreted ATP into the extracellular medium while hydrolyze poorly this nucleotide, which is in agreement with the low expression and activity of pyrophosphate/phosphodiesterase, NTPDases and alkaline phosphatase. The analysis of AMP hydrolysis showed that Daoy and ONS76 completely hydrolyzed AMP, with parallel adenosine production (Daoy) and inosine accumulation (ONS76). On the other hand, D283 cell line did not hydrolyze AMP. Moreover, primary MB tumor cells, Daoy and ONS76 express the ecto-5′NT/CD73 while D283 representative of a metastatic tumor, revealed poor expression of this enzyme, while the ecto-adenosine deaminase showed higher expression in D283 compared to Daoy and ONS76 cells. Nuclear beta-catenin has been suggested as a marker for MB prognosis. Further it can promotes expression of ecto-5′NT/CD73 and suppression of adenosine deaminase. It was observed that Daoy and ONS76 showed greater nuclear beta-catenin immunoreactivity than D283, which presented mainly cytoplasmic immunoreactivity. In summary, the absence of ecto-5′NT/CD73 in the D283 cell line, a metastatic MB phenotype, suggests that high expression levels of this ectonucleotidase could be correlated with a poor prognosis in patients with MB.  相似文献   

14.
In mammals, the circadian rhythm central generator consists of interactions among clock genes, including Per1/2/3, Cry1/2, Bmal1, and Clock. Circadian rhythm disruption may lead to increased risk of cancer in humans, and deregulation of clock genes has been implicated in many types of cancers. Among these genes, Per2 is reported to have tumor suppressor properties, but little is known about the correlation between Per2 and HIF, which is the main target of renal cell carcinoma (RCC) therapy. In this study, the rhythmic expression of the Per2 gene was not detectable in renal cancer cell lines, with the exception of Caki-2 cells. In Caki-2 cells, HIF1α increased the amplitude of Per2 oscillation by directly binding to the HIF-binding site located on the Per2 promoter. These results indicate that HIF1α may enhance the amplitude of the Per2 circadian rhythm.  相似文献   

15.
16.
17.
Soybean (Glycine max (L.) Merr.) isoflavone is important for human health and plant defense system. To identify novel quantitative trait loci (QTL) and epistatic QTL underlying isoflavone content in soybean, F5:6, F5:7 and F5:8 populations of 130 recombinant inbred (RI) lines, derived from the cross of soybean cultivar ‘Zhong Dou 27′ (high isoflavone) and ‘Jiu Nong 20′ (low isoflavone), were analyzed with 95 new SSR markers. A new linkage map including 194 SSR markers and covering 2,312 cM with mean distance of about 12 cM between markers was constructed. Thirty four QTL for both individual and total seed isoflavone contents of soybean were identified. Six, seven, ten and eleven QTL were associated with daidzein (DZ), glycitein (GC), genistein (GT) and total isoflavone (TI), respectively. Of them 23 QTL were newly identified. The qTIF_1 between Satt423 and Satt569 shared the same marker Satt569 with qDZF_2, qGTF_1 and qTIF_2. The qGTD2_1 between Satt186 and Satt226 was detected in four environments and explained 3.41%-10.98% of the phenotypic variation. The qGTA2_1, overlapped with qGCA2_1 and detected in four environments, was close to the previously identified major QTL for GT, which were responsible for large a effects. QTL (qDZF_2, qGTF_1 and qTIF_2) between Satt144-Satt569 were either clustered or pleiotropic. The qGCM_1, qGTM_1 and qTIM_1 between Satt540-Sat_244 explained 2.02%–9.12% of the phenotypic variation over six environments. Moreover, the qGCE_1 overlapped with qGTE_1 and qTIE_1, the qTIH_2 overlapped with qGTH_1, qGCI_1 overlapped with qDZI_1, qTIL_1 overlapped with qGTL_1, and qTIO_1 overlapped with qGTO_1. In this study, some of unstable QTL were detected in different environments, which were due to weak expression of QTL, QTL by environment interaction in the opposite direction to a effects, and/or epistasis. The markers identified in multi-environments in this study could be applied in the selection of soybean cultivars for higher isoflavone content and in the map-based gene cloning.  相似文献   

18.
The function and distribution of α1-adrenergic receptor (AR) subtypes in prostate cancer cells is well characterized. Previous studies have used RNA localization or low-avidity antibodies in tissue or cell lines to determine the α1-AR subtype and suggested that the α1 A-AR is dominant. Two androgen-insensitive, human metastatic cancer cell lines DU145 and PC3 were used as well as the mouse TRAMP C1-C3 primary and clonal cell lines. The density of α1-ARs was determined by saturation binding and the distribution of the different α1-AR subtypes was examined by competition-binding experiments. In contrast to previous studies, the major α1-AR subtype in DU145, PC3 and all of the TRAMP cell lines is the α1B-AR. DU145 cells contained 100% of the α1B-AR subtype, whereas PC3 cells were composed of 21% α1 A-AR and 79% α1B-AR. TRAMP cell lines contained between 66% and 79% of the α1B-AR with minor fractions of the other two subtypes. Faster doubling time in the TRAMP cell lines correlated with decreasing α 1B-AR and increasing α1 A- and α1D-AR densities. Transfection with EGFP-tagged α1B-ARs revealed that localization was mainly intracellular, but the majority of the receptors translocated to the cell surface after extended preincubation (18 hr) with either agonist or antagonist. Localization was confirmed by ligand-binding studies and inositol phosphate assays where prolonged preincubation with either agonist and/or antagonist increased the density and function of α 1-ARs, suggesting that the native receptors were mostly intracellular and nonfunctional. Our studies indicate that α1B-ARs are the major α1-AR subtype expressed in DU145, PC3, and all TRAMP cell lines, but most of the receptor is localized in intracellular compartments in a nonfunctional state, which can be rescued upon prolonged incubation with any ligand.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号