首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
A number of environmental cues including short day photoperiod (SD) and low temperature (LT) are known to interact in triggering growth cessation, cold acclimation and other adaptive responses in temperate-zone tree species. Proper timing of these responses is particularly important for survival of trees in the boreal and subarctic regions. Therefore, we used a northern tree species, silver birch ( Betula pendula Roth) as an experimental model to investigate the effect of SD and LT on development of freezing tolerance and on levels of endogenous abscisic acid (ABA) in short-term experiments under controlled conditions. We characterized differences in SD and LT-induced cold acclimation between three different climatic ecotypes from southern, central and northern habitats. The results demonstrated that cold acclimation was rapidly triggered by exposing the plants to SD or LT, and that a combination of the different treatments had an additive effect on freezing tolerance. Freezing tolerance induction was not uniform in the different tissues, the buds and leaves developed freezing tolerance more rapidly than the stem, and the young leaves had a higher freezing tolerance than the old leaves. The ability of the leaves to respond to SD and LT and similarity of the bud and leaf responses indicate that birch leaves provide a rapid and convenient system for studies on molecular mechanisms of cold acclimation. Development of freezing tolerance was dependent on the climatic ecotype, the northern ecotype was clearly more responsive to both SD and LT than the two more southern ecotypes. Development of freezing tolerance induced by SD and LT was accompanied by transient changes in ABA levels. These alterations in ABA levels were ecotype-dependent, the northern ecotype reacting more strongly to the environmental cues.  相似文献   

2.
Woody plants in the temperate and boreal zone undergo annual cycle of growth and dormancy under seasonal changes. Growth cessation and dormancy induction in autumn are prerequisites for the development of substantial cold hardiness in winter. During evolution, woody plants have developed different ecotypes that are closely adapted to the local climatic conditions. In this study, we employed distinct photoperiodic ecotypes of silver birch (Betula pendula Roth) to elucidate differences in these adaptive responses under seasonal changes. In all ecotypes, short day photoperiod (SD) initiated growth cessation and dormancy development, and induced cold acclimation. Subsequent low temperature (LT) exposure significantly enhanced freezing tolerance but removed bud dormancy. Our results suggested that dormancy and freezing tolerance might partially overlap under SD, but these two processes were regulated by different mechanisms and pathways under LT. Endogenous abscisic acid (ABA) levels were also altered under seasonal changes; the ABA level was low during the growing season, then increased in autumn, and decreased in winter. Compared with the southern ecotype, the northern ecotype was more responsive to seasonal changes, resulting in earlier growth cessation, cold acclimation and dormancy development in autumn, higher freezing tolerance and faster dormancy release in winter, and earlier bud flush and growth initiation in spring. In addition, although there was no significant ecotypic difference in ABA level during growing season, the rates and degrees of ABA alterations were different between the ecotypes in autumn and winter, and could be related to ecotypic differences in dormancy and freezing tolerance.  相似文献   

3.
Arabidopsis plants show an increase in freezing tolerance in response to exposure to low nonfreezing temperatures, a phenomenon known as cold acclimation. In the present study, we evaluated the physiological and morphological responses of various Arabidopsis ecotypes to continuous growth under chilling (14°C) and cold (6°C) temperatures and evaluated their basal freezing tolerance levels. Seedlings of Arabidopsis plants were extremely sensitive to low growth temperatures: the hypocotyls and petioles were much longer and the angles of the second pair of true leaves were much greater in plants grown at 14°C than in those grown at 22°C, whereas just intermediate responses were observed under the cold temperature of 6°C. Flowering time was also markedly delayed at low growth temperatures and, interestingly, lower growth temperatures were accompanied by longer inflorescences. Other marked responses to low temperatures were changes in pigmentation, which appeared to be both ecotype specific and temperature dependent and resulted in various visual phenotypes such as chlorosis, necrosis or enhanced accumulation of anthocyanins. The observed decreases in chlorophyll contents and accumulation of anthocyanins were much more prominent in plants grown at 6°C than in those grown at 14°C. Among the various ecotypes tested, Mt‐0 plants markedly accumulated the highest levels of anthocyanins upon growth at 6°C. Freezing tolerance examination revealed that among 10 ecotypes tested, only C24 plants were significantly more sensitive to subzero temperatures. In conclusion, Arabidopsis ecotypes responded differentially to cold (6°C), chilling (14°C) and freezing temperatures, with specific ecotypes being more sensitive in particular traits to each low temperature.  相似文献   

4.
Survival and growth of temperate zone woody plants under changing seasonal conditions is dependent on proper timing of cold acclimation and development of vegetative dormancy, shortening photoperiod being an important primary signal to induce these adaptive responses. To elucidate the physiological basis for climatic adaptation in trees, we have characterized photoperiodic responses in the latitudinal ecotypes of silver birch ( Betula pendula Roth) exposed to gradually shortening photoperiod under controlled conditions. In all ecotypes, shortening photoperiod triggered growth cessation, cold acclimation and dormancy development, that was accompanied by increases in endogenous abscisic acid (ABA) and decreases in indole-3-acetic acid (IAA). There were distinct differences between the ecotypes in the rates and degrees of these responses. The critical photoperiod and the photoperiodic sensitivity for growth cessation varied with latitudinal origin of the ecotype. The northern ecotype had a longer critical photoperiod and a greater photoperiodic sensitivity than the southern ecotype. Compared with the southern ecotypes, the northern ecotype was more responsive to shortening photoperiod, resulting in earlier cold acclimation, dormancy development, increase in ABA content and decrease in IAA content. However, at the termination of the experiment, all the ecotypes had reached approximately the same level of cold hardiness (−12 to −14°C), ABA content (2.1–2.3 µg g−1 FW) and IAA content (17.2–20.3 ng g−1 FW). In all ecotypes, increase in ABA levels preceded development of bud dormancy and maximum cold hardiness. IAA levels decreased more or less parallel with increasing cold hardiness and dormancy, suggesting a role of IAA in the photoperiodic control of growth, cold acclimation and dormancy development in birch.  相似文献   

5.
Levels of endogenous glycine betaine in the leaves were measured in response to cold acclimation, water stress and exogenous ABA application in Arabidopsis thaliana. The endogenous glycine betaine level in the leaves increased sharply during cold acclimation treatment as plants gained freezing tolerance. When glycine betaine (10 mM) was applied exogenously to the plants as a foliar spray, the freezing tolerance increased from -3.1 to -4.5 degrees C. In addition, when ABA (1 mM) was applied exogenously, the endogenous glycine betaine level and the freezing tolerance in the leaves increased. However, the increase in the leaf glycine betaine level induced by ABA was only about half of that by the cold acclimation treatment. Furthermore, when plants were subjected to water stress (leaf water potential of approximately -1.6 MPa), the endogenous leaf glycine betaine level increased by about 18-fold over that in the control plants. Water stress lead to significant increase in the freezing tolerance, which was slightly less than that induced by the cold acclimation treatment. The results suggest that glycine betaine is involved in the induction of freezing tolerance in response to cold acclimation, ABA, and water stress in Arabidopsis plants.  相似文献   

6.
In many woody plants photoperiod signals the initiation of dormancy and cold acclimation. The photoperiod-specific physiological and molecular mechanisms have remained uncharacterised. The role of abscisic acid (ABA) and dehydrins in photope-riod-induced dormancy and freezing tolerance was investigated in birch, Betula pubescens Ehrh. The experiments were designed to investigate if development of dormancy and freezing tolerance under long-day (LD) and short-day (SD) conditions could be affected by manipulation of the endogenous ABA content, and if accumulation of dehydrin-like proteins was correlated with SD and/or the water content of the buds. Experimentally, the internal ABA content was increased by ABA application and by water stress treatment under LD, and decreased by blocking the synthesis of ABA with fluridone under SD. Additionally, high humidity (95% RH) was applied to establish if accidental water stress was involved in SD. ABA content was monitored by gas chromatography-mass spectrometry with selective ion monitoring (SIM). Short days induced a transient increase in ABA content, which was absent in 95% RH, whereas fluridone treatment decreased ABA. Short days induced a typical pattern of bud desiccation and growth cessation regardless of the treatment, and improved freezing tolerance except in the fluridone treatment. ABA content of the buds was significantly increased after spraying ABA on leaves and after water stress, treatments that did not induce cessation of growth and dormancy, but improved freezing tolerance. In addition to several constitutively produced dehydrins, two SD-specific proteins of molecular masses 34 and 36 kDa were found. Photoperiod- and experimentally-induced alterations in ABA contents affected freezing tolerance but not cessation of growth and dormancy. Therefore, involvement of ABA in the photoperiodic control of cold acclimation is more direct than in growth cessation and dormancy. As the typical desiccation pattern of the buds was found in all SD plants, and was not directly related to ABA content or to freezing tolerance, this pattern characterises the onset of photo-period-induced growth cessation and dormancy. The results provide evidence for the existence of various constitutively and two photoperiod-induced dehydrins in buds of birch, and reveal characteristics of dormancy and freezing tolerance that may facilitate further investigations of photoperiodic control of growth in trees.  相似文献   

7.
Summary Abscisic acid (ABA) has been implicated as a regulatory factor in plant cold acclimation. In the present work, the cold-acclimation properties of an ABA-deficient mutant (aba) of Arabidopsis thaliana (L.) Heynh. were analyzed. The mutant had apparently lost its capability to cold acclimate: the freezing tolerance of the mutant was not increased by low temperature treatment but stayed at the level of the nonacclimated wild type. The mutational defect could be complemented by the addition of exogenous ABA to the growth medium, restoring freezing tolerance close to the wild-type level. This suggests that ABA might have a central regulatory function in the development of freezing tolerance in plants. Cold acclimation has been previously correlated to the induction of a specific set of proteins that have been suggested to have a role in freezing tolerance. However, these proteins were also induced in the aba mutant by low temperature treatment.  相似文献   

8.
对经低温驯化和未经低温驯化的磷脂酶Dδ (PLDδ)基因敲除突变体与野生型植株进行冻害胁迫处理后, 比较2种基因型植株的抗冻性。结果发现, 经低温驯化的PLDδ敲除突变体的抗冻性明显低于野生型, 而未经低温驯化的PLDδ敲除突变体与野生型的抗冻性没有显著差异, 表明PLDδ参与植物的低温驯化过程。对PLDδ的作用途径进行分析, 发现PLDδ在低温驯化过程中不参与抗氧化酶活性的调节, 对脯氨酸和可溶性糖的积累起负调节作用, 但是参与低温信号转导物质ABA诱导抗冻性的过程。  相似文献   

9.
Temperate zone woody plants cold acclimate in response to both short daylength (SD) and low temperature (LT). We were able to show that these two environmental cues induce cold acclimation independently by comparing the wild type (WT) and the transgenic hybrid aspen (Populus tremula x Populus tremuloides Michx.) line 22 overexpressing the oat (Avena sativa) PHYTOCHROME A gene. Line 22 was not able to detect the SD and, consequently, did not stop growing in SD conditions. This resulted in an impaired freezing tolerance development under SD. In contrast, exposure to LT resulted in cold acclimation of line 22 to a degree comparable with the WT. In contrast to the WT, line 22 could not dehydrate the overwintering tissues or induce the production of dehydrins (DHN) under SD conditions. Furthermore, abscisic acid (ABA) content of the buds of line 22 were the same under SD and long daylength, whereas prolonged SD exposure decreased the ABA level in the WT. LT exposure resulted in a rapid accumulation of DHN in both the WT and line 22. Similarly, ABA content increased transiently in both the WT and line 22. Our results indicate that phytochrome A is involved in photoperiodic regulation of ABA and DHN levels, but at LT they are regulated by a different mechanism. Although SD and LT induce cold acclimation independently, ABA and DHN may play important roles in both modes of acclimation.  相似文献   

10.
To investigate the molecular mechanisms controlling the process of cold acclimation and to identify genes involved in plant freezing tolerance, mutations that impaired the cold acclimation capability of Arabidopsis thaliana (L.) Heynh. were screened for. A new mutation, frs1 (freezing sensitive 1), that reduced both the constitutive freezing tolerance as well as the freezing tolerance of Arabidopsis after cold acclimation was characterized. This mutation also produced a wilty phenotype and excessive water loss. Plants with the frs1 mutation recovered their wild-type phenotype, their capability to tolerate freezing temperatures and their capability to retain water after an exogenous abscisic acid (ABA) treatment. Measurements of ABA revealed that frs1 mutants were ABA deficient, and complementation tests indicated that frs1 mutation was a new allele of the ABA3 locus showing that a mutation in this locus leads to an impairment of freezing tolerance. These results constitute the first report showing that a mutation in ABA3 leads to an impairment of freezing tolerance, and not only strengthen the conclusion that ABA is required for full development of freezing tolerance in cold-acclimated plants, but also demonstrate that ABA mediates the constitutive freezing tolerance of Arabidopsis. Gene expression in frs1 mutants was altered in response to dehydration, suggesting that freezing tolerance in Arabidopsis depends on ABA-regulated proteins that allow plants to survive the challenges imposed by subzero temperatures, mainly freeze-induced cellular dehydration. Received: 16 December 1999 / Accepted: 31 March 2000  相似文献   

11.
12.
Cold resistance in Antarctic angiosperms   总被引:9,自引:0,他引:9  
Deschampsia antarctica Desv. (Poaceae) and Colobanthus quitensis (Kunth) Bartl. (Cariophyllaceae) are the only two vascular plants that have colonized the Maritime Antarctic. The primary purpose of the present work was to determine cold resistance mechanisms in these two Antarctic plants. This was achieved by comparing thermal properties of leaves and the lethal freezing temperature to 50% of the tissue (LT50). The grass D. antarctica was able to tolerate freezing to a lower temperature than C. quitensis. The main freezing resistance mechanism for C. quitensis is supercooling. Thus, the grass is mainly a freezing‐tolerant species, while C. quitensis avoids freezing. D. antarctica cold acclimated; thus, reducing its LT50. C. quitensis showed little cold‐acclimation capacity. Because day length is highly variable in the Antarctic, the effect of day length on freezing tolerance, growth, various soluble carbohydrates, starch, and proline contents in leaves of D. antarctica growing in the laboratory under cold‐acclimation conditions was studied. During the cold‐acclimation treatment, the LT50 was lowered more effectively under long day (21/3 h light/dark) and medium day (16/8) light periods than under a short day period (8/16). The longer the day length treatment, the faster the growth rate for both acclimated and non‐acclimated plants. Similarly, the longer the day treatment during cold acclimation, the higher the sucrose content (up to 7‐fold with respect to non‐acclimated control values). Oligo and polyfructans accumulated significantly during cold acclimation only with the medium day length treatment. Oligofructans accounted for more than 80% of total fructans. The degrees of polymerization were mostly between 3 and 10. C. quitensis under cold acclimation accumulated a similar amount of sucrose than D. antarctica, but no fructans were detected. The suggestion that survival of Antarctic plants in the Antarctic could be at least partially explained by accumulation of these substances is discussed.  相似文献   

13.
对经低温驯化和未经低温驯化的磷脂酶Dδ(PLDδ)基因敲除突变体与野生型植株进行冻害胁迫处理后,比较2种基因型植株的抗冻性。结果发现,经低温驯化的PLDδ敲除突变体的抗冻性明显低于野生型,而未经低温驯化的PLD礅除突变体与野生型的抗冻性没有显著差异,表明PLDδ参与植物的低温驯化过程。对PLDδ的作用途径进行分析,发现PLDδ在低温驯化过程中不参与抗氧化酶活性的调节,对脯氨酸和可溶性糖的积累起负调节作用,但是参与低温信号转导物质ABA诱导抗冻性的过程。  相似文献   

14.
15.
The role of ABA in freezing tolerance and cold acclimation in barley   总被引:4,自引:0,他引:4  
The role of ABA in freezing resistance in nonacclimated and cold‐acclimated barley ( Hordeum vulgare L.) was studied. Eleven nonacclimated cultivars differed in their LT50, ranging from −10.8 to −4.8°C. Sugars, free proline, soluble proteins and ABA were analyzed in nonacclimated cultivars and during cold acclimation of one cultivar. There was an inverse correlation between LT50 and both ABA and sucrose contents. Exogenous ABA caused a decrease in the freezing point of leaf tissue in the cultivar with the lowest level of endogenous ABA, but not in the cultivar with the highest level, suggesting that ABA in the latter may be near the optimum endogenous level to induce freezing tolerance. Plants of cv. Aramir treated with ABA or allowed to acclimate to cold temperature increased their soluble sugar content to a similar level. The LT50 of leaves of cold‐acclimated cv. Aramir decreased from −5.8 to −11.4°C, with biphasic kinetics, accumulating proline and soluble sugars with similar kinetics. The biphasic profile observed during cold acclimation could be a direct consequence of cryoprotectant accumulation kinetics. ABA and soluble protein accumulation showed a single step profile, associated mainly with the second phase of the LT50 decrease. Thus, a significant increase in endogenous ABA is part of the response of barley to low temperature and may be required as a signal for the second phase of cold acclimation. Endogenous ABA contents in the nonacclimated state may determine constitutive freezing tolerance.  相似文献   

16.
The freezing tolerance or cold acclimation of plants is enhanced over a period of time by temperatures below 10°C and by a short photoperiod in certain species of trees and grasses. During this process, freezing tolerance increases 2–8°C in spring annuals, 10–30°C in winter annuals, and 20–200°C in tree species. Gene upregulation and downregulation have been demonstrated to be involved in response to environmental cues such as low temperature. Evidence suggests ABA can substitute for the low temperature stimulus, provided there is also an adequate supply of sugars. Evidence also suggests there may be ABA-dependent and ABA-independent pathways involved in the acclimation process. This review summarizes the role of ABA in cold acclimation from both a historical and recent perspective. It is concluded that it is highly unlikely that ABA regulates all the genes associated with cold acclimation; however, it definitely regulates many of the genes associated with an increase in freezing tolerance.  相似文献   

17.
During cold acclimation by higher plants, temperature perception via changes in redox state of Photosystem II (PSII) and subsequent acclimation of the photosynthetic apparatus to cold is very important for achieving freezing tolerance. These properties were studied in two groups (A and B) of the same backcross 3 (BC3) progeny derived from a triploid hybrid of Festuca pratensis (2×) × Lolium multiflorum (4×) backcrossed three times onto diploid L. multiflorum cultivars. Leaves of Group A plants formed at 20°C at medium-low light were unable to acclimate their photosynthetic apparatus to cold. Compared to Group B, the Group A plants were also more frost sensitive. This acclimation ability correlated with the freezing tolerance of the plants. However, leaves of the same Group A plants developed at 20°C, but under higher-light conditions had increased ability to acclimate their photosynthetic apparatus to cold. It was concluded that Group A plants may have impaired PSII temperature perception, and this then resulted in their poor capability to cold acclimate.  相似文献   

18.
19.
Two related protein phosphatases 2C, ABI1 and AtPP2CA have been implicated as negative regulators of ABA signalling. In this study we characterized the role of AtPP2CA in cold acclimation. The pattern of expression of AtPP2CA and ABI1 was studied in different tissues and in response to abiotic stresses. The expression of both AtPP2CA and ABI1 was induced by low temperature, drought, high salt and ABA. The cold and drought-induced expression of these genes was ABA-dependent, but divergent in various ABA signalling mutants. In addition, the two PP2C genes exhibited differences in their tissue-specific expression as well as in temporal induction in response to low temperature. To elucidate the function of AtPP2CA in cold acclimation further, the corresponding gene was silenced by antisense inhibition. Transgenic antisense plants exhibited clearly accelerated development of freezing tolerance. Both exposure to low temperature and application of ABA resulted in enhanced freezing tolerance in antisense plants. These plants displayed increased sensitivity to ABA both during development of frost tolerance and during seed germination, but not in their drought responses. Furthermore, the expression of cold-and ABA-induced genes was enhanced in transgenic antisense plants. Our results suggest that AtPP2CA is a negative regulator of ABA responses during cold acclimation.  相似文献   

20.
Abscisic acid (ABA) has been postulated to play a role in the development of freezing tolerance during the cold acclimation process in higher plants, but its role in cold tolerance in tower land plants has not been elucidated. The moss Physcomitrella patens rapidly developed freezing tolerance when its protonemata were grown in a medium containing ABA, with dramatic changes in the LT50 value from -2 degrees C to over -10 degrees C. We examined physiological and morphological alterations in protonema cells caused by ABA treatment to elucidate early cellular events responsible for rapid enhancement of freezing tolerance. Microscopic observations revealed that ABA treatment for 1 day resulted in a dramatic alteration in the appearance of intracellular organelles. ABA-treated cells had slender chloroplasts, with a reduced amount of starch grains, in comparison with those of non-treated cells. The ABA-treated cells also had several segmented vacuoles while many of non-treated cells had one central vacuole. When frozen to -4 degrees C, freezing injury-associated ultrastructural changes such as formation of aparticulate domains and fracture-jump lesions were frequently observed in the plasma membrane of non-treated protonema cells but not in that of ABA-treated cells. The ABA treatment increased the osmotic concentration of the protonema cells, in correlation with accumulation of free soluble sugars. These results suggest that ABA-induced accumulation of soluble sugars, associated with morphological changes in organelles, mitigated freezing-induced structural damage in the plasma membrane, eventually leading to enhancement of freezing tolerance in the protonema cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号