首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
Drought is a major abiotic stress, limiting the survival and growth of young plants. However, little is known about sex‐dependent responses to drought at the proteome level. In this study, we carried out investigations on comparative proteomics, combined with physiological and organelle structure analyses, in males and females of Populus cathayana Rehd. Three‐month‐old poplar cuttings were treated at 30% of field capacity and at 100% field capacity as a control in a greenhouse for 40 days. Drought greatly inhibited plant growth, damaged the photosynthetic system and destructed the structures of chloroplasts, mitochondria and cellular membranes. However, males suffered less from the adverse effects of drought than did females. Using 2‐DE, 563 spots were detected, of which 64 spots displayed significant drought effect and 44 spots displayed a significant sex by drought interaction effect. The results suggest that the different responses to drought stress detected between the sexes have a close relationship to the changes in the expression of sex‐dependent proteins, including, e.g. photosynthesis‐related proteins, homeostasis‐related proteins and stress response proteins. These proteins could contribute to a physiological advantage under drought, giving potential clues for understanding sexual differences in the performance of plants in different environments.  相似文献   

2.
淹水胁迫对青杨雌雄幼苗生理特性和生长的影响   总被引:4,自引:0,他引:4       下载免费PDF全文
为揭示青杨(Populus cathayana)雌雄幼苗对淹水胁迫的适应性, 在实验地内通过土培盆栽淹水方式从植株生理生态和生长发育方面探讨淹水胁迫对青杨扦插苗的影响。试验分为对照和淹水2个处理, 处理时间为40天。结果显示: (1)淹水胁迫导致青杨幼苗叶片中的丙二醛(MDA)含量和茎部淹水区的不定根数显著升高, 植株的净光合速率(Pn)、叶绿素含量、超氧化物歧化酶(SOD)活性、株高、基径、总叶面积、比叶面积(SLA)、根生物量、叶生物量、茎生物量、总生物量干重和根冠比(R/S)显著降低。(2)与雄株相比, 淹水胁迫显著增加了雌株幼苗的MDA含量, 降低了SOD活性、Pn、类胡萝卜素(Caro)含量、叶绿素a/b、SLA、根生物量和R/S, 并导致雄株在淹水胁迫下具有比雌株更高的气孔导度(Gs)、胞间CO2浓度(Ci)、蒸腾速率(Tr)、不定根数和株高。可见, 淹水胁迫对青杨雌雄幼苗的形态生长和生理过程均有严重的抑制作用, 但表现出显著的性别间差异。雄株可以通过维持更高的光合作用能力和增加不定根数量来维持植株的生长, 从而表现出比雌株更强的抗逆性。  相似文献   

3.
4.
通过对小五台山天然青杨种群的野外调查,并使用胸径与株高的异速生长模型来分析其雌雄群体间的生长差异,以探究雌雄异株植物青杨在性成熟条件和形态特征中是否存在性间差异。结果表明:(1)在青杨生长过程中,胸径随年龄呈指数型增长,而株高随年龄呈对数型增长;(2)雌雄植株的性成熟条件不同。雌株进入性成熟阶段的最低年龄和胸径都小于雄株;(3)青杨高径生长过程存在性别差异。雌株的异速生长指数显著大于雄株(P=0.024)。表明天然青杨种群中雌株一般性成熟较早,成熟后营养生长偏重于胸径增粗;而雄株性成熟较晚,营养生长偏重于植株增高。相对于雄株,雌株具有较高的树干机械强度。  相似文献   

5.
铝胁迫对青杨雌雄幼苗生理生态特征的影响   总被引:2,自引:0,他引:2  
以青杨雌雄幼苗为对象,研究铝胁迫(Al3+浓度为216 mg·kg-1)下其生理生态特征及光合作用的差异.结果表明:铝胁迫下,青杨幼苗的丙二醛和可溶性蛋白含量显著增加(P<0.001),且雄株的丙二醛显著低于雌株,而可溶性蛋白显著高于雌株;雄株过氧化物酶活性显著增加、超氧化物歧化酶活性显著降低,而雌株无显著变化;雌雄幼苗的光合速率显著降低(P=0.001),雌株的蒸腾速率显著下降(P=0.007)、瞬时水分利用效率显著增加,而雄株均无显著变化;雌株幼苗的叶绿素a含量、总叶绿素含量和叶绿素a/b值显著降低,而雄株的叶绿素a/b值显著高于雌株;雌株的比叶面积显著降低、雄株的比叶面积显著增加,而叶和茎的干物质量无显著变化.与雌株相比,青杨雄株的可溶性蛋白含量、抗氧化酶活性、叶绿素含量和光合速率较高,其抗逆性更强.  相似文献   

6.
Low temperature is one of the abiotic factors limiting plant growth and productivity. Yet, knowledge about sex-related responses to low temperature is very limited. In our study, the effects of low, non-freezing temperature on morphological, physiological, and ultrastructural traits of leaves in Populus cathayana Rehd. males and females were investigated. The results showed that 4 °C temperature caused a chilling stress, and females suffered from greater negative effects than did males. At the early growth stage of development, chilling (4 °C) significantly inhibited plant growth, decreased net photosynthesis rate (P(n)), stomatal conductance (g(s)), transpiration (E), and chlorophyll pigments (Chl), and increased intercellular CO(2) concentration (C(i)), chlorophyll a/b (Chl a/b), proline, soluble sugar and H(2)O(2) contents, and ascorbate peroxidase (APX) activity in both sexes, whereas peroxidase (POD) and glutathione reductase (GR) activities decreased and thiobarbituric acid reactive substance (TBARS) content increased only in females. Chilling stress also caused chloroplast changes and an accumulation of numerous plastoglobules and small vesicles in both sexes. However, disintegrated chloroplasts and numerous tilted grana stacks were only found in chilling-stressed females. Under chilling stress, males showed higher Chl and soluble sugar contents, and higher superoxide dismutase (SOD), POD, and GR activities than did females. In addition, males exhibited a better chloroplast structure and more intact plasma membranes than did females under chilling stress. These results suggest that sexually different responses to chilling are significant and males possess a better self-protection mechanism than do females in P. cathayana.  相似文献   

7.
尽管植物邻体关系受到广泛关注,但关于雌雄异株植物性别间邻体关系的研究还较少。本研究比较了雌、雄青杨幼苗生物量的积累对其邻株性别和土壤灭菌的响应差异,并分析了性别间的邻体效应关系及不同性别混栽下生物量的差异。结果表明: 同性邻株模式降低了青杨雌株或雄株生物量的积累,而异性邻株模式在未灭菌条件下促进了雌株的生物量积累;土壤灭菌抑制了雌雄株生物量的积累,尤其是雌株;灭菌对同性邻体效应无显著影响,但异性邻株对雌株的效应由正相关关系变为中性相关,对雄株的效应由中性关系变为负相关;在所有组合中,未灭菌下的雌雄组合生物量最高,而灭菌下的雄雄组合生物量最低。雌雄青杨的生长对邻株性别的响应不同,且邻体效应受土壤微生物的影响。研究结果可为高产杨树人工林的栽培提供支撑。  相似文献   

8.
Populus yunnanensis Dode., a native dioecious woody plant in southwestern China, was employed as a model species to study sex‐specific morphological, physiological and biochemical responses to elevated CO2 and salinity. To investigate the effects of elevated CO2, salinity and their combination, the cuttings were exposed to two CO2 regimes (ambient CO2 and double ambient CO2) and two salt treatments in growth chambers. Males exhibited greater downregulation of net photosynthesis rate (Anet) and carboxylation efficiency (CE) than females at elevated CO2, whereas these sexual differences were lessened under salt stress. On the other hand, salinity induced a higher decrease in Anet and CE, more growth inhibition and leaf Cl? accumulation and more damage to cell organelles in females than in males, whereas the sexual differences in photosynthesis and growth were lessened at elevated CO2. Moreover, elevated CO2 exacerbated membrane lipid peroxidation and organelle damage in females but not in males under salt stress. Our results indicated that: (1) females are more sensitive and suffer from greater negative effects than do males under salt stress, and elevated CO2 lessens the sexual differences in photosynthesis and growth under salt stress; (2) elevated CO2 tends to aggravate the negative effects of salinity in females; and (3) sex‐specific reactions under the combination of elevated CO2 and salinity are distinct from single‐stress responses. Therefore, these results provide evidence for different adaptive responses between plants of different sexes exposed to elevated CO2 and salinity.  相似文献   

9.
Dioecious plant species represent an important component of terrestrial ecosystems. Yet, little is known about sex-specific responses to drought and elevated temperatures. Populus cathayana Rehd, which is a dioecious, deciduous tree species, widely distributed in the northern, central and southwestern regions of China, was employed as a model species in our study. In closed-top chamber experiments, sex-specific morphological, physiological and biochemical responses of P. cathayana to drought and different elevated temperatures were investigated. Compared with the controls, drought significantly decreased the growth and the net photosynthesis rate (A), and increased the intrinsic water use efficiency (WUE(i)), carbon isotope composition (delta13C), and the malondialdehyde (MDA) and abscisic acid (ABA) contents in droughted plants. In contrast, elevated temperatures significantly promoted the growth and the A, but decreased the WUE(i), delta13C, MDA and ABA contents in well-watered individuals. When compared with males, elevated temperatures induced well-watered females to express a greater increase in the height growth (HG), basal diameter (BD), leaf area (LA), total number of leaves (TNL), dry matter accumulation (DMA) and specific leaf area (SLA), and a lower decrease in the A value, transpiration (E), stomatal conductance (g(s)), MDA and ABA contents, while elevated temperatures induced drought-stressed females to exhibit lower values of HG, BD, LA, TNL, DMA, A, E, g(s) and the intercellular CO2 concentration (C(i)), and higher levels of SLA, WUE(i), delta13C, MDA and ABA contents. Our results indicated that the female individuals of P. cathayana are more responsive and suffer from greater negative effects than do males when grown under environments with increased drought stress and elevated temperature.  相似文献   

10.
Drought stress responses and sensitivity of dioecious plants, such as Populus cathayana Rehd., are determined by different mechanisms in each sex. In general, males tend to be more resistant while females are more sensitive. Here, we used reciprocal grafting between males and females to determine the relative importance of roots and shoots when plants are exposed to drought stress. Total dry matter accumulation (DMA), photosynthetic capacity, long‐term water‐use efficiency (Δ), water potential and ultrastructure of mesophyll cells were evaluated to determine the different roles of root and shoot in sex‐related drought responses. Plants with male roots were found to be more resistant and less sensitive to water stress than those with female roots under drought conditions. On the contrary, plants with female shoots grew better than those with male shoots under well‐watered conditions. These results indicated that the sensitivity of males and females to water stress is primarily influenced by root processes, while under well‐watered conditions sexual differences in growth are primarily driven by shoot processes. Furthermore, grafting female shoot scion onto male rootstock was proved to be an effective mean to improve resistance to water stress in P. cathayana females.  相似文献   

11.
近年来,森林食叶害虫在全世界呈爆发趋势。树木的非结构性碳水化合物(NSC)如何响应叶片损失对其生长和生存至关重要。雌雄异株植物在维持森林生态系统稳定性方面扮演着重要角色。然而,目前对该类植物性别之间如何响应去叶的研究还比较少。本文以我国重要的经济和生态恢复树种青杨(Populus cathayana)为研究材料,比较了雌雄青杨幼苗的生长、NSC含量和储量对去叶(0,50%和100%叶片去除)的响应差异。结果表明:随去叶强度的增加,植物的生物量和植株NSC呈降低趋势,且根系(尤其是粗根)的生物量和NSC比地上部分受去叶的影响更大;雌株叶、粗根、细根和植株NSC储量总是高于雄株;随去叶强度增加,雄株的生物量积累和NSC含量和储量降低得比雌株更多。这些结果表明,青杨雌雄植株生长和NSC对不同去叶强度的响应存在性别差异,且去叶对青杨雄株的影响更大。这暗示了雌性青杨对去叶的耐性比雄性强。这些结果有助于理解雌雄异株植株性别水平上的碳平衡机理,也可为杨树人工林的选育提供支撑。  相似文献   

12.
We used Populus cathayana, a native species with an extensive distribution in northern, central, and southwestern China, as a model species to detect the sex-specific differences in photosynthetic capacity, ultrastructure, nitrogen (N) metabolism, and nickel (Ni) accumulation and distribution in response to Ni stress. Exposure to 100 μM Ni2+ in a hydroponic system for 1 month significantly decreased the pigment content and the photosynthetic rate, caused visible impairment in cellular organelle structure, and induced obvious disturbance and imbalance in the N content of female plants, while male plants suffered a lower negative influence on all the above measured parameters. However, males accumulated a higher Ni concentration in both leaves and roots than females, while the transportation ratio of Ni from roots to shoots in males was slightly lower than that in females. Our results, therefore, suggest that males have a better tolerance capacity and a greater ability to remediate Ni-polluted soil than females. This greater tolerance capacity in males might be highly correlated with the better maintenance of N balance and more effective physiological detoxification responses (such as the response to proline) under Ni stress. The differences between the sexes in tolerance capacity to heavy metals should be verified after performing a field investigation using adult trees as materials in the future study.  相似文献   

13.
Responses of males and females to salinity were studied in order to reveal sex‐specific adaptation and evolution in Populus cathayana Rehd cuttings. This dioecious tree species plays an important role in maintaining ecological stability and providing commercial raw material in southwest China. Female and male cuttings of P. cathayana were treated for about 1 month with 0, 75 and 150 mM NaCl. Plant growth traits, gas exchange parameters, chlorophyll pigments, intrinsic water use efficiency (WUEi), membrane system injuries, ion transport and ultrastructural morphology were assessed and compared between sexes. Salt stress caused less negative effects on the dry matter accumulation, growth rate of height, growth rate of stem base diameter, total number of leaves and photosynthetic abilities in males than in females. Relative electrolyte leakage increased more in females than in males under salinity stress. Soil salinity reduced the amounts of leaf chlorophyll a, chlorophyll b and total chlorophyll, and the chlorophyll a/b ratio more in females than in males. WUEi decreased in both sexes under salinity. Regarding the ultrastructural morphology, thylakoid swelling in chloroplasts and degrading structures in mitochondria were more frequent in females than in males. Moreover, females exhibited significantly higher Na+ and Cl? concentrations in leaves and stems, but lower concentrations in roots than did males under salinity. In all, female cuttings of P. cathayana are more sensitive to salinity stress than males, which could be partially due to males having a better ability to restrain Na+ transport from roots to shoots than do females.  相似文献   

14.
为了解不同干旱胁迫处理下,杨树叶片光合特性和气孔形态的变化规律,本研究以4个杨树无性系为材料,对其干旱胁迫下光合指标与气孔形态指标进行测定分析,方差分析结果表明:除气孔器长在处理间差异不显著外,其他性状在无性系间、处理间和无性系与处理交互作用间均达极显著差异水平。随着土壤相对含水量的逐渐降低,无性系净光合速率、蒸腾速率和气孔导度都呈现出不同程度的下降;而胞间二氧化碳浓度呈现为先降后升趋势,表明当土壤相对含水量大于40%时,光合作用的主要限制因子是气孔因素,当土壤相对含水量低于40%时,光合作用的主要限制因子转换为非气孔因素。气孔形态研究结果表明,各指标均随土壤相对含水量的持续降低呈现出持续下降趋势。利用隶属函数法对不同干旱胁迫下4个杨树无性系的抗旱性进行综合评价,结果表明:白城小青黑杨的抗旱性优于其他三个无性系。  相似文献   

15.
In seed plants, the proximate causes of spatial segregation of the sexes (SSS) and its association with environmental variation are thought to be linked to sex-specific morphological and physiological variation. To address the general question of linkage among SSS, plant traits and environmental gradients, Marchantia inflexa was used, for which male plants are found under more open tree canopy than females. We hypothesized that males are adapted to higher light intensity and are better able to tolerate water stress than females, as is the case with seed plants. We tested for sex-specific habitat and trait relationships by quantifying plant traits (morphological and physiological) and estimates of the light conditions (percent canopy openness and light intensity) in the field. Using path analysis, we found that edge pore density in both sexes was negatively correlated with canopy openness, while in males, edge pore density had a weak but positive relationship to light intensity. These responses suggest that canopy openness and light intensity have opposing effects on edge pore density in males and that males might be more responsive to water stress than females. Additionally, the greater importance of female support tissue, which functions as storage, in explaining and being explained by other variables in the path analysis, relative to male support tissue, may reflect sex-specific allocation differences related to resources needed for female function.  相似文献   

16.
17.
18.
雌雄异株植物对环境胁迫响应的性别差异研究进展   总被引:7,自引:1,他引:6  
胥晓  杨帆  尹春英  李春阳 《应用生态学报》2007,18(11):2626-2631
从温度、CO2、水分以及生境变化4个方面综述了雌雄异株植物的雌雄个体在环境胁迫下出现的不同生理、生态和生化差异.温度胁迫将导致雌雄个体在气孔导度、净同化作用、耐冻性形成以及ABA含量等方面出现不同的生理响应,响应大小受限于外界条件.雄株植物的净光合速率高于雌株,而且随着CO2浓度的增高,二者的光合作用受到明显的促进,生物量均显著增加.水分胁迫使雌雄个体在干物质积累、净光合速率、蒸腾速率、水分利用效率和碳同位素值等生理指标以及部分形态指标呈现显著差异.多数植物的雄株个体在干旱环境中具有较高的水分利用效率,对水分胁迫的抗性更大.不同生境中雌雄异株植物雌雄个体的适应性各不相同.在土壤干燥、养分贫瘠、海拔较高、坡度较大的生境中,雄性植株生长良好,数量较多;而在湿润、肥沃、低海拔或低洼的生境中,雌性植株生长良好.  相似文献   

19.
20.
Cuttings of Populus kangdingensis C. Wang et Tung and Populus cathayana Rehder were examined during a single growing season in a greenhouse for comparative analysis of their physiological and proteomic responses to drought stress. The said species originate from high and low altitudes, respectively, of the eastern Himalaya. Results revealed that the adaptive responses to drought stress vary between the two poplar species. As a consequence of drought stress, the stem height increment and leaf number increment are more significantly inhibited in P. cathayana compared with P. kangdingensis. On the other hand, in response to drought stress, more significant cellular damages such as reduction in leaf relative water content and CO2 assimilation rate, increments in the contents of malondialdehyde and hydrogen peroxide and downregulation or degradation of proteins related to photosynthesis occur in P. cathayana compared with P. kangdingensis. On the other hand, P. kangdingensis can cope better with the negative impact on the entire regulatory network. This includes more efficient increases in content of solute sugar, soluble protein and free proline and activities of antioxidant enzymes, as well as specific expressions of certain proteins related to protein processing, redox homeostasis and sugar metabolism. Morphological consequences as well as physiological and proteomic responses to drought stress between species revealed that P. kangdingensis originating from a high altitude manifest stronger drought adaptation than did P. cathayana originating from a low altitude. Functions of various proteins identified by proteomic experiment are related with physiological phenomena. Physiological and proteomic responses to drought stress in poplar may work cooperatively to establish a new cellular homeostasis, allowing poplar to develop a certain level of drought tolerance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号