首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
In dioecious plants, differences in growth traits between sexes in a response to micro-environmental heterogeneity may affect sex ratio bias and spatial distributions. Here, we examined sex ratios, stem growth traits and spatial distribution patterns in the dioecious clonal shrub Aucuba japonica var. borealis, in stands with varying light intensities. We found that male stems were significantly more decumbent (lower height/length ratio) but female stems were upright (higher height/length ratio). Moreover, we found sex-different response in stem density (no. of stems per unit area) along a light intensity gradient; in males the stem density increased with increases in canopy openness, but not in females. The higher sensitivity of males in increasing stem density to light intensity correlated with male-biased sex ratio; fine-scale sex ratio was strongly male-biased as canopy openness increased. There were also differences between sexes in spatial distributions of stems. Spatial segregation of sexes and male patches occupying larger areas than female patches might result from vigorous growth of males under well-lit environments. In summary, females and males showed different growth responses to environmental variation, and this seemed to be one of possible causes for the sex-differential spatial distributions and locally biased sex ratios.  相似文献   

2.
雌雄异株植物对环境胁迫响应的性别差异与性别比例 雌雄异株植物在性特征(繁殖器官)和次级性特征(植物的特征)均表现出性二态。形态、生理与生态特征等次级性特征的性别差异,通常在繁殖成本和其他功能性状之间存在着权衡。尽管有证据表明性二态对环境胁迫的响应不一定存在于所有植物中,但次级性特征的权衡可能受到环境胁迫的影响。当植物表现出性二态时,不同的物种与胁迫因子可以导致性别特异性的响应。因此,胁迫作用对雌雄异株植物影响的概括性研究是必须的。另外,性二态可能会影响雌雄异株植物沿着环境梯度的频率和分布,引起生态位分化与性别空间分异。目前,控制性别比例偏差的原因和机制还知之甚少。本综述旨在讨论不利环境下的性别特异性响应与性别比例偏差,有利于深入的理解性二态对环境胁迫的响应。  相似文献   

3.
Unisexual, female- or male-biased populations are common among some clonal plants. Within and among populations, the relative frequencies of males and females can be influenced by sex-specific demographic patterns that, in turn, can be a consequence of life-history characteristics. The objectives of this study were to describe (1)  population sex-ratio patterns among habitat patches along a river, and (2)  sex-specific patterns of and correlations among life-history clonal traits including: growth rates, number of meristematic tips and asexual reproduction in the dioecious liverwort, Marchantia inflexa . In Trinidad, a section of a stream was surveyed for the occurrence of female and male sex expressing thalli among habitat patches, and habitat characteristics (canopy openness and patch size) were recorded. The numbers of female and male inflorescences were obtained also. Of the 209 patches observed in the field, 83% did not contain sex expressing thalli, 9% contained thalli of both sexes, and the rest contained only female- (4%) or male-expressing (4%) thalli. Sex expression was less common among small patches, and there was a tendency for sex expression to be less likely among patches with the lowest canopy openness. The proportion of male inflorescences among the bisexual patches ranged from 0.22 to 0.80. In a greenhouse, we planted gemmae (asexual propagules) from field-collected isolates: ten female and eight male. On six occasions, we harvested replicates of each isolate to estimate isolate trait means. Females grew faster, produced more meristematic tips and had lower levels of asexual reproduction than males. Number of meristematic tips was negatively correlated with asexual reproduction and positively correlated with growth rate. These sex-specific patterns may lead to the high frequency of single sex patches as well as biased adult population sex ratios that are observed in the field.  相似文献   

4.
Following the theory on costs of reproduction, sexually dimorphic plants may exhibit several trade-offs in energy and resources that can determine gender dimorphism in morphological or physiological traits, especially during the reproductive period.In this study we assess whether the sexes of the dioecious species Empetrum rubrum differ in morphological and ecophysiological traits related to water economy and photochemical efficiency and whether these differences change in nearby populations with contrasting plant communities.We conducted physiological, morphological, sex ratio, and cover measurements in E. rubrum plants in the Magellanic steppe, North-Eastern part of Tierra del Fuego (Argentina), from two types of heathlands with differing community composition.We found differences between sites in soil pH and wind speed at the canopy level. E. rubrum plants exhibited lower photosynthetic height and higher LAI (leaf area index), lower RWC (relative water content) and higher water-use efficiency (lower Δ13C) in the heathland with harsher environmental conditions. Gender dimorphism in the physiological response was patent for photochemical efficiency and water use (RWC and Δ13C discrimination), with males showing a more conservative strategy in relation to females. Accordingly, male-biased sex ratio in the stress-prone community suggested a better performance of male plants under stressful environmental conditions. The integrated analysis of all variables (photochemical efficiency, RWC, leaf dry matter content (LDMC), pigments, and Δ13C) indicated an interaction between gender and heathland community effects in the physiological response. We suggest that female plants may exhibit compensatory mechanisms to face their higher reproductive costs.  相似文献   

5.
Sexual dimorphism in dioecious plants often occurs as a consequence of the different resource requirements of females and males, especially during reproduction. The contrasting reproductive roles of the sexes can influence the phenology of growth, plant size, and flowering time, with implications for the intensity of competitive interactions within and between the sexes. Here, we investigate the influence of contrasting nutrient regimes and intra-sexual and inter-sexual competition on the expression of sexual dimorphism in life-history traits and biomass allocation throughout the life cycle of the dioecious annual Rumex hastatulus Baldw. (Polygonaceae). Development of a sex-specific marker enabled us to quantify the influence of competition on sex-specific differences in mortality and vegetative traits. We were particularly interested in determining whether the overall performance of the sexes might differ between the two forms of intra-specific competition, potentially providing evidence for sexual specialization in resource acquisition and niche differentiation. Our results indicated that although patterns of sexual dimorphism were dynamic, they were largely insensitive to nutrient conditions. We found that intra-sexual competition was more severe than inter-sexual competition, differentially affecting mortality and most traits during the vegetative and particularly the reproductive stage of the life history. Female trait values generally increased more under inter-sexual than intra-sexual competition in comparison to males. Our findings are consistent with temporal niche differentiation resulting from sexual specialization for different resource requirements and provide evidence for the “Jack Sprat effect.”  相似文献   

6.
Several factors have been proposed to explain female maintenance in gynodioecious populations. In this study, we propose and test a novel hypothesis: greater tolerance to herbivory through more beneficial interactions with plant fungal mutualists might also help to explain female maintenance. Herbivory limits the amount of carbon and nutrients available for the plants and has been shown to affect mycorrhizal colonization. We hypothesized that simulated herbivory would decrease reproductive output, mycorrhizal colonization intensity, and the phosphorus content relatively more in hermaphrodites, so females would achieve higher advantage over hermaphrodites when under herbivory pressure. We tested it in the field using the gynodioecious plant Geranium sylvaticum. We found that simulated herbivory had a negative effect on the reproductive output in both sexes and that there was a similar reduction in fruit set, seed set, and total seed number in both sexes. Defoliation did not affect any fungal parameter measured, but decreased phosphorus content relatively more in females. The plants had a sex-specific relationship with mycorrhizae, but this was not related to herbivory. Thus, we conclude that females do not gain any specific advantage under defoliation from its symbionts at short-term even though it seems that the plants have sex-specific relationship with their mycorrhizal symbionts.  相似文献   

7.
Spatial segregation of the sexes (SSS) has been reported in >30 dioecious species from 24 plant families. Such convergent evolution can arise via shared constraints and/or shared selective pressures but the extent to which SSS is adaptive is unresolved. In particular, because mating in plants occurs primarily among near neighbors, any fitness benefits of SSS should usually be offset by the separation of mating partners during reproduction. It has been argued that the problem of mating in plants with SSS should be alleviated in plants with more reliable modes of pollination, such as wind pollination. Accordingly, we evaluated the association between SSS and pollination mode using phylogenetically controlled comparative analyses. Moreover, because outcrossing plants produce many more pollen grains than ovules, females should compete less intensely for mating partners than males. We therefore predicted that any fitness costs arising from segregation should be greater for males than females. We evaluated this prediction using spatially explicit stochastic simulations. The comparative analyses indicated that there is indeed a positive association between wind pollination and SSS, but also that SSS might be associated with clonal growth. Because methods used for detecting SSS can be biased by clonality, this raises the possibility that some cases of SSS are ‘false positives’. The simulation results supported the prediction that male fitness is more strongly affected by segregation than female fitness. Contrary to arguments based on anecdotal evidence, increasing the effectiveness of pollen dispersal had little effect on the fitness of segregated males. Instead, our results indicated that the evolutionary maintenance of SSS requires substantial performance advantages to segregated males. However, there is little empirical evidence that such performance advantages exist. Future efforts to understand the evolution of SSS should focus on the detection of performance differences between segregated and unsegregated plants, particularly males.  相似文献   

8.
Estimates of genetic components are important for our understanding of how individual characteristics are transferred between generations. We show that the level of heritability varies between 0.12 and 0.68 in six morphological traits in house sparrows (Passer domesticus L.) in northern Norway. Positive and negative genetic correlations were present among traits, suggesting evolutionary constraints on the evolution of some of these characters. A sexual difference in the amount of heritable genetic variation was found in tarsus length, wing length, bill depth and body condition index, with generally higher heritability in females. In addition, the structure of the genetic variance-covariance matrix for the traits differed between the sexes. Genetic correlations between males and females for the morphological traits were however large and not significantly different from one, indicating that sex-specific responses to selection will be influenced by intersexual differences in selection differentials. Despite this, some traits had heritability above 0.1 in females, even after conditioning on the additive genetic covariance between sexes and the additive genetic variances in males. Moreover, a meta-analysis indicated that higher heritability in females than in males may be common in birds. Thus, this indicates sexual differences in the genetic architecture of birds. Consequently, as in house sparrows, the evolutionary responses to selection will often be larger in females than males. Hence, our results suggest that sex-specific additive genetic variances and covariances, although ignored in most studies, should be included when making predictions of evolutionary changes from standard quantitative genetic models.  相似文献   

9.

Background and Aims

Expected life history trade-offs associated with sex differences in reproductive investment are often undetected in seed plants, with the difficulty arising from logistical issues of conducting controlled experiments. By controlling genotype, age and resource status of individuals, a bryophyte was assessed for sex-specific and location-specific patterns of vegetative, asexual and sexual growth/reproduction across a regional scale.

Methods

Twelve genotypes (six male, six female) of the dioecious bryophyte Bryum argenteum were subcultured to remove environmental effects, regenerated asexually to replicate each genotype 16 times, and grown over a period of 92 d. Plants were assessed for growth rates, asexual and sexual reproductive traits, and allocation to above- and below-ground regenerative biomass.

Key Results

The degree of sexual versus asexual reproductive investment appears to be under genetic control, with three distinct ecotypes found in this study. Protonemal growth rate was positively correlated with asexual reproduction and sexual reproduction, whereas asexual reproduction was negatively correlated (appeared to trade-off) with vegetative growth (shoot production). No sex-specific trade-offs were detected. Female sex-expressing shoots were longer than males, but the sexes did not differ in growth traits, asexual traits, sexual induction times, or above- and below-ground biomass. Males, however, had much higher rates of inflorescence production than females, which translated into a significantly higher (24x) prezygotic investment for males relative to females.

Conclusions

Evidence for three distinct ecotypes is presented for a bryophyte based on regeneration traits. Prior to zygote production, the sexes of this bryophyte did not differ in vegetative growth traits but significantly differed in reproductive investment, with the latter differences potentially implicated in the strongly biased female sex ratio. The disparity between males and females for prezygotic reproductive investment is the highest known for bryophytes.  相似文献   

10.
A. B. Nicotra 《Oecologia》1998,115(1-2):102-113
Populations of dioecious plant species often exhibit biased sex ratios. Such biases may arise as a result of sex-based differences in life history traits, or as a result of spatial segregation of the sexes. Of these, sex-based differentiation in life history traits is likely to be the most common cause of bias. In dioecious species, selection can act upon the sexes in a somewhat independent way, leading to differentiation and evolution toward sex-specific ecological optima. I examined sex ratio variation and spatial distribution of the tropical dioecious shrub Siparuna grandiflora to determine whether populations exhibited a biased sex ratio, and if so, whether the bias could be explained in terms of non-random spatial distribution or sex-based differentiation in life history traits. Sex ratio bias was tested using contingency tables, a logistic regression approach was utilized to examine variation in life history traits, and spatial distributions were analyzed using Ripley's K, a second-order neighborhood analysis. I found that although populations of S. grandiflora have a male-biased sex ratio within and among years, there was no evidence of spatial segregation of the sexes. Rather, the sex ratio bias was shown to result primarily from sex-based differentiation in life history traits; males reproduce at a smaller size and more frequently than females. The sexes also differ in the relationship between plant size and reproductive frequency. Light availability was shown to affect reproductive activity in both sexes, though among infrequently flowering plants, females require higher light levels than males to flower. The results of this study demonstrate that ecologically significant sex-based differentiation has evolved in S. grandiflora. Received: 30 July 1997 / Accepted: 16 December 1997  相似文献   

11.
Knowledge of heritability and genetic correlations are of central importance in the study of adaptive trait evolution and genetic constraints. We use a paternal half-sib-full-sib breeding design to investigate the genetic architecture of three life-history and morphological traits in the seed beetle, Callosobruchus maculatus. Heritability was significant for all traits under observation and genetic correlations between traits (r(A)) were low. Interestingly, we found substantial sex-specific genetic effects and low genetic correlations between sexes (r(MF)) in traits that are only moderately (weight at emergence) to slightly (longevity) sexually dimorphic. Furthermore, we found an increased sire ([Formula: see text]) compared to dam ([Formula: see text]) variance component within trait and sex. Our results highlight that the genetic architecture even of the same trait should not be assumed to be the same for males and females. Furthermore, it raises the issue of the presence of unnoticed environmental effects that may inflate estimates of heritability. Overall, our study stresses the fact that estimates of quantitative genetic parameters are not only population, time, environment, but also sex specific. Thus, extrapolation between sexes and studies should be treated with caution.  相似文献   

12.
Abstract. Poa ligularis is a dioecious species and a valuable forage plant which is widespread in the arid steppe of northern Patagonia (Argentina). The vegetation in these areas consists of a system of perennial plant patches alternating with bare soil areas defining contrasting micro‐environments. We hypothesized that (1) male and female individuals of P. ligularis are spatially segregated in different micro‐environments, (2) the intensity of spatial segregation of sexes depends on plant structure and (3) spatial segregation of sexes is enhanced by competitive interactions between the sexes within the vegetation patches. We analysed the spatial distribution of female and male individuals in relation to the spatial pattern of vegetation in two areas differing in their vegetation structure. The location of P. ligularis within patches where either male, female or both sexes occurred was also analysed. The results indicate that different patterns of spatial distribution of sexes of P. ligularis may be found at the community level depending on the dominant life forms and geometric structure of plant patches. Where patches are of a lower height, with a high internal patch cover, individuals of both sexes are concentrated within patch canopies. In sites characterized by large, tall patches and less internal patch cover suitable microsites for female and male P. ligularis occur both within and outside the patch with males located at further distances from the patch edge. Where the patch is large and tall enough to allow the establishment of males and females at relatively high numbers, males occupy the patch periphery or even colonize the interpatch bare soil. These spatial patterns are consistent with selective traits in which females better tolerate intraspecific competition than males, while males tolerate wider fluctuations in the physical environment (soil moisture, nitrogen availability, wind intensity, etc.).  相似文献   

13.
Adaptive radiation theory predicts that phenotypic traits involved in ecological performance evolve in different directions in populations subjected to divergent natural selection, resulting in the evolution of ecological diversity. This idea has largely been supported through comparative studies exploring relationships between ecological preferences and quantitative traits among different species. However, intersexual perspectives are often ignored. Indeed, although it is well established that intersexual competition and sex-specific parental and reproductive roles may often subject sex-linked phenotypes to antagonistic selection effects, most ecomorphological research has explored adaptive evolution on a single sex, or on means obtained from both sexes together. The few studies taking sexual differences into account reveal the occurrence of sex-specific ecomorphs in some clades of lizards, and conclude that the independent contribution of the sexes to the morphological diversity produced by adaptive radiation can be substantial. Here, we investigate whether microhabitat use results in the evolution of sex-specific ecomorphs across 44 Liolaemus lizard species. We found that microhabitat structure does not predict variation in body size and shape in either of the sexes. Yet, we found that males and females tend to occupy significantly different positions in multivariate morphological spaces, indicating that treating males and females as ecologically and phenotypically equivalent units may lead to incomplete or mistaken estimations of the diversity produced by adaptive evolution.  相似文献   

14.
In most studies about dioecious plants, the role of arbuscular mycorrhizae (AM) and the potential sex-specific differences between the plant hosts have been overlooked. Because plant sexes frequently differ in drought tolerance and AM fungal colonization provides higher resistance to drought, we investigated whether the relation of mycorrhizal fungi with either male or female Antennaria dioica plants differs using a factorial experiment. We hypothesized that because AM usually increase growth rate and male plants usually grow larger than females, males should gain more benefit from the mycorrhizal symbiosis in terms of mineral nutrition and water supply. Because of higher demands of carbohydrates (C) in males, we expected males to allocate less C resources to the mycorrhizal fungus so that the associated fungi should benefit less of the association with males. In contrast to our initial hypothesis, the male plants, although faster growing under drought, did not gain more symbiosis-mediated benefits than did the females, and both sexes seemed to provide resources equally to their fungal symbiont. Therefore, we conclude that the two plant sexual morphs provide equal amounts of C to their fungal root symbionts and that they can gain specific benefits from the symbiosis, which, however, depend on soil water availability.  相似文献   

15.
Summary Desert populations of the evergreen dioecious shrub Simmondsia chinensis exhibit sex-related leaf and canopy dimorphisms not present in populations from more mesic coastal environments. Leaves on female shrubs have characteristically larger sizes, greater specific weights, and greater water-holding capacity than male leaves in desert habitats. In coastal scrub environments no significant difference is present, with leaf characteristics of both sexes similar to those of desert male shrubs. Desert female shrub canopies are typically relatively open with little mutual branch shading. In male shrubs canopies are more densely branched with considerable mutual shading of branches. Female plants allocate a greater proportion of their vegetative resources to leaves than do male plants. Considering total biomass, male plants allocate 10–15% of their resources (biomass, calories, glucose-equivalents, nitrogen, phosphorus) to reproductive tissues. Female allocation is dependent on seed set. At 100% seed set females would allocate 30–40% of their resources to reproduction, while female reproductive investment would equal that of males at approximately 30% seed set. Sexual dimorphism and the associated physiological characteristics in Simmondsia act as an alternative to differential habitat selection by male and female plants. Female plants respond to limited water resources in desert areas by increasing their efficiency in allocating limited resources to reproductive structures.  相似文献   

16.
  1. Species’ ranges are dynamic, changing through range shifts, contractions, and expansions. Individuals at the edge of a species’ shifting range often possess morphological traits that increase movement capacity, that are not observed in individuals farther back within the species’ range. Although morphological traits that increase in proportion toward the range edge may differ between the sexes, such sex differences are rarely studied.
  2. Here, we test the hypotheses that body size and condition increase with proximity to an expanding range edge in the flightless ground beetle, Carabus hortensis, and that these trait changes differ between the sexes.
  3. Male, but not female, body size increased with proximity to the range edge. Body size was positively correlated with male front and mid tibia length and to female hind tibia length, indicating that body size is indicative of movement capacity in both sexes. Body condition (relative to body size) decreased with increasing population density in males but not females. Population density was lowest at the range edge.
  4. Our results indicate that sex is an important factor influencing patterns in trait distribution across species’ ranges, and future studies should investigate changes in morphological traits across expanding range margins separately for males and females. We discuss the implications for sex differences in resource allocation and reproductive rates for trait differentiation across species’ shifting ranges.
  相似文献   

17.
Després L 《Oecologia》2003,135(1):60-66
Some plants are exclusively pollinated by an insect whose larvae feed on their seeds. The net outcome of a single visit for the plant depends on the number of ovules fertilised by the visitor, the number of eggs laid, and the number of seeds eaten by each larva. Unlike other known plant-seed eater pollinating mutualisms, the globeflower-globeflower fly mutualism (Trollius europaeus-Chiastocheta spp.) is unique in that not only females but also males visit flowers, and both sexes are potential pollinators. I analysed the relative efficiency of Chiastocheta males versus females in transporting pollen and fertilising globeflower ovules. I show that there is no sex-specific morphological adaptation or behaviour to enhance pollen collection and transportation in Chiastocheta flies, and that males contribute to pollination. However, because of their smaller body size, males transport significantly less pollen than females. Less seeds are produced after a visit from a male than after a visit from a female. A single female visit contributes to about 12% of total seed production, and a single male visit to only 5.4%. Females tend to spend more time inside the flower than males, and the number of ovules fertilised is significantly correlated with the time insects spent inside the closed corolla. The lower efficiency of ovule fertilisation by a male's single visit is compensated for by the higher rate of flower visitation by males: a flower receives about twice as many visits from males as from females during a time unit. The contribution of males to pollination is of major importance with respect to understanding the evolutionary stability of the globeflower-globeflower fly mutualism, as males satiate pollen requirement of flowers, masking the antagonistic effect of ovipositing females.  相似文献   

18.
Summary Within the high arctic of Canada, Salix arctica, a dioecious, dwarf willow exhibits significant spatial segregation of the sexes. The overall sex ratio is female-biased and female plants are especially common in wet, higher nutrient, but lower soil temperature habitats. In contrast, male plants predominate in more xeric and lower nutrient habitats with higher soil temperatures that can be drought prone. Associated with the sex-specific habitat differences were differences in the seasonal and diurnal patterns of water use as measured by stomatal conductance to water vapor and the bulk tissue water relations of each gender. Within the wet habitats, female plants maintained higher rates of stomatal conductance (g) than males when soil and root temperatures were low (<4° C). In contrast, within the xeric habitats, male plants maintained higher g and had lower leaf water potentials leaf at low soil water potentials and a high leaf-to-air vapor pressure gradient (w) when compared to females. Female plants had more positive carbon isotope ratios than males indicating a lower internal leaf carbon dioxide concentration and possibly higher water use efficiency relative to males. Tissue osmotic and elastic properties also differed between the sexes. Male plants demonstrated lower tissue osmotic potentials near full tissue hydration and at the turgor loss point and a lower bulk tissue elastic modulus (higher tissue elasticity) than female plants. Males also demonstrated a greater ability to osmotically adjust on a diurnal basis than females. These properties allowed male plants to maintain higher tissue turgor pressures at lower tissue water contents and soil over the course of the day. The sex-specific distributional and ecophysiological characteristics were also correlated with greater total plant growth and higher fecundity of females in wet habitats, and males in xeric habitats respectively. The intersexual differences in physiology persisted in all habitats. These results and those obtained from growth chamber studies suggest that sex-specific differences have an underlying genetic basis. From these data we conjecture that selection maintaining the intersexual differences may be related to different costs associated with reproduction that can be most easily met through physiological specialization and spatial segregation of the sexes among habitats of differing conditions.  相似文献   

19.
Fluctuating asymmetry of morphological traits is thought to reflect the capacity of a genotype to produce an integrated, functional phenotype. I tested three predictions. (1) In a polygynous breeding system, under intense sexual selection on males, breeding males should show greater symmetry in bilaterally symmetrical traits than non-breeding males or females. (2) If these traits are under stabilizing selection, highly symmetrical individuals also should be modal phenotypes, thus near the mean value for that trait, whereas individuals with increased asymmetry should represent marginal phenotypes, near the extremes of the distribution for that trait. (3) Differences in the intensity of sexual selection should be reflected in differences in the degree of fluctuating asymmetry between sexes among populations. I examined the relationship between male breeding status and the degree of fluctuating asymmetry of four bilaterally symmetrical- traits, preorbital and preopercular pores and pectoral and pelvic fin rays, in two populations of Pecos pupfish which differed in the intensity of sexual selection. These traits do not function in male-male competition or female choice, thus are not directly affected by sexual selection. In Mirror Lake breeding males, as a group, were most symmetrical for all four traits, while non-breeding males and females showed higher levels of fluctuating asymmetry. Similarly, symmetrical individuals also represented modal phenotypes for four traits (breeding males), and for three traits (non-breeding males and females). These patterns were not seen in the Lake Francis population, where breeding males were as asymmetrical as non-breeding males and females, and the degree of fluctuating symmetry did not differ between modal and marginal phenotypes for any of the four traits. When ecological conditions favour intense sexual selection, either through female choice, male-male competition, or both, breeding males represent the most fit phenotypes. Thus sexual selection reinforces the effects of stabilizing selection on characters that do not function as secondary sexual traits. However, when sexual selection is relaxed, differences between sexes disappear.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号